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THC-MEDIATED INDUCTION OF ΔFOSB AND ITS MODULATION OF CB1R 

SIGNALING AND ADAPTATION 

 

By Matthew Frederick Lazenka 

Bachelor of Science, Psychology, East Tennessee State University, Johnson City, TN 2007 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University 

Virginia Commonwealth University, 2013 

 

 

Director:  Dr. Laura Sim-Selley, Ph.D.  

Associate Professor 

Department of Pharmacology & Toxicology 

 

The main psychoactive and therapeutic effects of Δ
9
-tetrahydrocannabinol (THC) are 

mediated through cannabinoid type 1 receptors (CB1Rs).  The therapeutic uses of THC are 

mitigated by the development of tolerance to these therapeutic effects, whereas tolerance does 

not readily develop to some of the side-effects of THC, like motor impairment and reward.  The 

development of tolerance occurs through adaptations at CB1Rs, which include desensitization 

(G-protein uncoupling) and downregulation (receptor degradation).  Brain region-dependent 

differences in THC-mediated adaptations are proposed to explain the differences in tolerance to 

various THC-mediated effects. These studies focused on whether ΔFosB, a stable transcription 

factor, could regulate CB1R adaptations since regions resistant to CB1R adaptations, like the 

basal ganglia, exhibit THC-mediated ΔFosB induction.  The studies in this dissertation tested the 

hypothesis that THC-mediated induction of ΔFosB is regulated through interactions between 

cannabinoid and dopamine systems and that brain region-dependent differences in ΔFosB 

transcriptional regulation could explain some aspects of long-term CB1R signaling and CB1R 

adaptations.  Results determined that THC induced ΔFosB primarily in forebrain areas, like 

striatum, that are innervated by midbrain dopamine neurons.  An inverse, brain region-dependent 
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correlation was found between CB1R desensitization and ΔFosB induction. Studies utilizing 

bitransgenic mice with overexpression of ΔFosB, or its dominant negative ∆cJun, determined 

that ΔFosB regulates CB1R signaling and reduces CB1R desensitization.  Based on this regional 

profile, studies determined the role of dopamine signaling in THC-mediated ∆FosB induction.  

Results showed that THC-mediated induction of ΔFosB required dopamine type 1 receptors, but 

not the dopamine-and cAMP-dependent phosphoprotein of Mr 32kDA.  Finally, the functional 

consequences of THC-mediated ΔFosB induction were assessed by measuring expression of 

known targets of ΔFosB following both acute and repeated THC administration.  Results found 

that, in prefrontal cortex, known targets of ΔFosB exhibited functionally different signaling 

expression patterns when comparing acute THC with THC-challenge in THC-experienced mice, 

which enhanced ΔFosB induction.  These studies establish a role for ΔFosB in regulating long-

term CB1R signaling/adaptation following repeated THC administration and could have 

implications for changes in the effects of THC during repeated administration, including the 

development of differential tolerance to motor-impairing and rewarding effects of THC versus 

other pharmacological effects.   
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Introduction 

0.1 History of cannabis use 

Marijuana is derived from the Cannabis sativa plant, which provides food from its seeds, 

fiber from its stalks and intoxicating preparations from its flowers, leaves and resins.  Marijuana 

was first used in making fibers, known as hemp, as early as 8000 B.C. (Kabilek, 1960). Hemp’s 

most important uses historically were for bow strings and rope for sailing, with minor uses for 

paper and clothing.  Although it is not clear when the marijuana plant was first used for 

medicine, historical records indicate that the first prescribed uses were around 2737 B.C. by 

Shen Neng, a Chinese emperor.  He recommended the use of marijuana tea for gout, malaria, 

beriberi, rheumatism and poor memory (Abel, 1980).  The use of marijuana for medicine 

migrated to India, and it was listed in the Indian text Artharvaveda as a holy plant that relieved 

stress.  Pliny the Elder, a Roman philosopher, also mentioned the use of marijuana as a 

painkiller, although the side effect of impotency was noted.  Pedacius Dioscrides, a physician in 

Nero’s army compiled a pharmacopoeia in 70AD that listed marijuana for earaches and other 

medical applications.  Side effects were also noted for the use of marijuana; Ibn Wahshiyah’s 

Arabic text On Poisons mentioned that hashish produced blindness and muteness. 

 W. B. O’Shaunessey, an Irish physician serving in the British army, familiarized the 

medicinal properties of marijuana to the Western world after studying it in India and produced a 

treatise in 1839 describing its medicinal properties (Adams and Martin, 1996).  His studies 

focused on the safety of marijuana in animals and determined that even high doses did not 

produce death (Snyder, 1971).  He recommended marijuana as an anticonvulsant, analgesic, 

antiemetic and antianxiety agent, promoting its use in both the United Kingdom and throughout 
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Europe (Mechoulam and Feigenbaum, 1987).  The Ohio State Medical Society listed several 

medicinal uses for marijuana in 1860. By the 1900s, pharmaceutical companies like the Squibb 

Company, Eli Lilly and Parke-Davis provided tinctures of the extract.  The disuse of marijuana 

as medicine coincided with the Marijuana Tax Act of 1937, which resulted in the removal of 

marijuana from the U.S. Pharmacopoeia in 1941 and criminalization of marijuana in every state.  

This also ended most research into marijuana for medicinal purposes in the United States and 

abroad.  In the 1960s, states began to decriminalize marijuana use, but criminalization of 

marijuana returned in the 1980s.  More recently, several states have approved marijuana for 

medicinal and recreational uses.  Marijuana is the most commonly abused illicit drug, with 46% 

of Americans having tried marijuana and ~9% of marijuana users considered dependent based on 

DSM-IV-R criteria (SAMHSA, 2010).  

 

Figure 0.1. Representative chemical structures of A) phytocannabinoids B) synthetic 

cannabinoids C) endogenous cannabinoids and D) CB1R inverse agonist 
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0.2 THC and Synthetic Cannabinoids  

Although marijuana is composed of more than 60 cannabinoid constituents (Mechoulam 

and Parker, 2013), Δ
9
-tetrahydrocannabinol (THC) is the main psychoactive constituent.  Roger 

Adams first isolated the main constituents of marijuana in the 1940s, but these compounds did 

not have psychoactive properties (Adams, 1940).  Raphael Mechoulam first reported the 

isolation of several active compounds of similar lipid structure, including the structure of THC 

(Gaoni, 1964; Mechoulam and Gaoni, 1965).  Based on this structure, several synthetic 

cannabinoid ligands have been produced and are grouped by structure (Figure 0.1).  Synthetic 

compounds used in research include HU-210, an ABC-tricyclic dibenzopyrans, that was 

synthesized by Mechoulam in 1988 (Mechoulam et al., 1988), the AC-bicyclic, ((-)-cis-3-[2-

hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol)(CP55,940) 

and the aminoalkylindole (R-(+)-[2,3-Dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-

de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate) (WIN55,212-2), which has a very 

different structure from other cannabinoids (Howlett et al., 2002).  From the structure of these 

compounds, the antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-

pyrazole-carboxamide (SR141716A) was also created by Sanofi Aventis (Rinaldi-Carmona et 

al., 1994). CP55,940 is a high efficacy partial agonist at the cannabinoid type 1 receptor (CB1R) 

and is a full agonist at the cannabinoid type 2 receptor (CB2R), with similar binding affinities for 

both CB1Rs and CB2Rs (Howlett et al., 2002).  [
3
H]CP55,940 is one widely used radiolabeled 

cannabinoid ligands and has historical significance, as it was first used to demonstrate a specific 

cannabinoid binding site (Devane et al., 1988) and to anatomically map the distribution of 

cannabinoid receptors in rat brain (Herkenham et al., 1991b) using autoradiography. 

WIN55,212-2 is a full agonist at CB1Rs, and the prototype of the aminoalkylindole family whose 
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structure is not based on the structure of THC (Figure 0.1). WIN55,212-2 has also been used in 

autoradiographic studies (Jansen et al., 1992). Synthesis of a CB1R-selective antagonist 

SR141716A, which was determined to be an inverse agonist (Gueudet et al., 1995; Landsman et 

al., 1997) (Gifford and Ashby, 1996), was critical in establishing the specificity of CB1R-

mediated effects, and demonstrated that the centrally-mediated in vivo and behavioral effects of 

cannabinoids are CB1R-dependent (Rinaldi-Carmona et al., 1994).  SR141716A has also been 

used to map CB1Rs in rodent brain (Rinaldi-Carmona et al., 1996).    

 

 

Figure 0.2. Schematic diagram of the endogenous cannabinoid system.  Neurotransmitter 

released from the presynaptic terminal causes on-demand synthesis of 2-arachindonoylglycerol 

(2-AG) and arachidonoylethanolamine (AEA). 2-AG is degraded by monacylglycerol lipase 

(MAGL) and AEA is degraded by fatty acid amide hydrolase (FAAH).  Both 2-AG and AEA are 

agonists at the cannabinoid type 1 receptor (CB1R).  Cannabinoid type 2 receptors (CB2Rs), not 

pictured here, are found primarily on non-neuronal cells.  Adapted from (Guzman, 2003) 
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0.3 The endogenous cannabinoid system 

Based on the lipid structure, early researchers suggested that THC acted directly on the 

cell membrane as opposed to a specific receptor system (Martin et al., 1988).  The first evidence 

of a specific receptor-mediated mechanism of action for THC was provided by Howlett and 

colleagues.  They discovered that THC inhibited adenylyl cyclase (AC) activity in 

neuroblastoma cells under both basal and hormone-stimulated conditions (Howlett, 1984; 

Howlett and Fleming, 1984).  This group later reported that THC required the G-protein subunit 

Gαi to produce their biological responses (Howlett et al., 1986).  The role of Gαi was determined 

by using pertussis toxin, which is derived from Bordetella pertussis.  Pertussis toxin ribosylates a 

cysteine on Gαi and Gαo subunits when they are associated with βγ subunits (Locht and Antoine, 

1995; Mangmool and Kurose, 2011). The creation of a tritiated form of CP55,940 led to the 

discovery of a specific binding site for cannabinoid compounds in the brain (Devane et al., 

1988).  This study also determined that the nonhydrolyzable guanosine triphosphate (GTP) 

analog, guanylylimidodiphosphate, displaced CP55,940 from its binding site, suggesting that 

CP55,940 coupled to a site that also coupled to G-proteins.  Two cannabinoid receptors were 

subsequently cloned from cDNA libraries; the CB1R from rat cerebral cortex (Matsuda et al., 

1990) and CB2R from spleen (Munro et al., 1993).  The CB1R gene in mice and rats encodes a 

473 amino acid protein and is composed of two encoding exons and one non-encoding exon. 

Amino acid identity between mouse and rat CB1Rs is 99.5% while mouse and human sequence 

identity approaches 97% (Abood et al., 1997). Phylogentically, CB1Rs  and their homologuesare 

expressed in animals of the chordate phylum, as well as  invertebrates in the annelid phylum 

(McPartland and Glass, 2003).  CB1Rs and CB2Rs share 44% structural homology and THC 

binds to both receptors with similar potency.  CB2Rs are commonly found on immune cells 
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(Cabral and Marciano-Cabral, 2005; Pettit et al., 1998), but may also be expressed by neurons 

(Onaivi et al., 2006; Van Sickle et al., 2005).  CB2Rs have also been implicated in the rewarding 

properties of cocaine (Xi et al., 2011), nicotine (Ignatowska-Jankowska et al., 2013) and ethanol 

(Ortega-Alvaro et al., 2013).  Herkenham and collaborators used [
3
H]CP55,940 autoradiography 

to localize CB1R in the rodent central nervous system (CNS) (Herkenham, 1991).     

The discovery of endogenous cannabinoid receptors was followed by identification of 

endogenous ligands.  Although several putative lipid-based endogenous ligands have been 

discovered, arachidonoylethanolamine (anandamide, AEA) (Devane et al., 1992) and 2-

arachindonoylglycerol (2-AG) (Mechoulam et al., 1995; Stella et al., 1997; Sugiura et al., 1995) 

are considered the only confirmed endocannabinoids (Figure 0.2).  Although AEA and 2-AG 

have similar binding affinities, 2-AG exhibits higher efficacy than AEA at both CB1Rs and 

CB2Rs (Pertwee, 2005). Because AEA is highly susceptible to metabolism, synthetic derivatives 

such as (R)-(+)-methanandamide have been developed that exhibit greater metabolic stability, 

affinity, and CB1R selectivity (Di Marzo et al., 2001; Lin et al., 1998).    Unlike classical 

neurotransmitters, endocannabinoids are produced on demand (Marsicano et al., 2003) following 

increases in intracellular calcium (Rodriguez de Fonseca et al., 2005) and undergo retrograde 

transmission.  Initial studies had suggested that AEA was primarily synthesized by hydrolysis of 

N-acyl-phosphatidylethanolamines (NAPE) by NAPE phospholipase D (NAPE-PLD) (Schmid et 

al., 1990).   However, AEA is produced in mice with genetic deletion of NAPE-PLD (Leung et 

al. 2006) suggesting that alternative pathways include double-deacylation of NAPE by α/β-

hydrolase 4 (ABH4) followed by phosphodiesterase-mediated cleavage by 

glycerophosphodiesterase 1 (GDE1) (Simon and Cravatt, 2006) and phospholipase C-catalyzed 

cleavage of NAPE and dephosphorylation of NAPE (Liu et al., 2006).  The production of AEA 
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in mice with genetic deletion of both GDE1 and NAPE further suggests that multiple 

biosynthesis pathways exist for AEA (Leung et al., 2006; Simon and Cravatt, 2010).  The 

synthesis of 2-AG has been more clearly defined.  2-AG is synthesized in a phospholipase C-

dependent manner by the cleavage of sn-1-acyl-2-arachidonoylglycerols (DAGs) by DAG lipase 

(DAGL).  Two isoforms of DAGL exist, DAGLα and DAGLβ, although DAGLα appears to 

predominant in the CNS (Gao et al., 2010; Tanimura et al., 2010).  AEA and 2-AG are rapidly 

degraded following release by two separate enzymes, fatty acid amide hydrolase (FAAH) and 

monacylglycerol lipase (MAGL), respectively. 

Although CB1Rs and CB2Rs are considered the accepted cannabinoid receptors and AEA 

and 2-AG are the accepted ligands, there is evidence to support a growing number of receptors 

and ligands that could be considered part of the endogenous cannabinoid system.  GPR55 has 

been considered a putative cannabinoid binding receptor (Ross et al., 2012) while noladin ether 

(Fezza et al., 2002) and N-arachidonoyldopamine (Bisogno et al., 2000) have been suggested as 

putative endogenous ligands.  Further, AEA has been suggested to be an agonist at the vanilloid 

type 1 (TRPV1) receptor (Di Marzo et al., 2001).  More recently, studies in our laboratory have 

determined that WIN55,212-2 shows brain region-dependent activation of other receptors (Non 

CB1R/CB2R/GPR55) while CP55,940 appears to be specific for the CB1Rs in all brain regions 

(Nguyen et al., 2010).      
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Figure 0.3 Location of CB1Rs in forebrain and midbrain regions of the mesocorticolimbic 

dopaminergic system.  From (Fitzgerald et al., 2012) 

0.4 Neuroanatomical localization of CB1Rs and in vivo effects 

CB1Rs are expressed heterogeneously throughout the CNS and are one of the most 

abundant G-protein coupled receptors (GPCRs) in the brain (Howlett et al., 2002) (Figure 0.3).  

Very high expression of CB1Rs is found in the globus pallidus, substantia nigra pars reticulata 

and molecular layer of the cerebellum.  Moderate expression in the hippocampus, striatum 

(caudate-putamen and nucleus accumbens) and lower expression occurs in the hypothalamus, 

periaqueductal gray (PAG), basolateral amygdala, ventral tegmental area and cortex 
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(Herkenham, 1991).  In the human CNS, the distribution of CB1Rs is very similar even 

throughout development where CB1R densities are higher in earlier developmental stages (Glass 

et al., 1997).  Studies utilizing CB1R knockout mice and the CB1R-specific inverse agonist, 

SR171614A, have demonstrated that these receptors mediate many of the behavioral effects of 

THC (Rinaldi-Carmona et al., 1994; Zimmer et al., 1999).  Corresponding to the regional 

expression of CB1Rs, cannabinoid agonists produce effects in rodents that include motor 

impairment, memory impairment, hypothermia, antinociception, anxiety-like behaviors and 

hyperreflexia (Compton et al., 1993; Dewey, 1986).  In preclinical studies, behaviors attributed 

to marijuana use in humans are attributed to CB1R activation including: increased feeding 

(Beardsley et al., 1986; Chambers et al., 2007), reduced emesis and nausea (Darmani, 2001a, b), 

a wide range of analgesia/antinociception or reductions in pain hypersensitivity (Lichtman and 

Martin, 1991; Martin et al., 1999).  There are also impairments in several aspects of memory 

(Lichtman and Martin, 1996; Niyuhire et al., 2007) and reduced  pressure in the aqueous humor 

in the eye (Chien et al., 2003; Green and Pederson, 1973); however, only some behaviors like 

“subjective high” and tachycardia have been verified to be CB1Rs-dependent in humans (Huestis 

et al., 2001). THC has been found to increase dopamine release in the nucleus accumbens and 

increase activation of ventral tegmental area neurons like other drugs of abuse; however, it is not 

certain that acute THC is rewarding (Gardner, 2005b). THC also increases dopamine release in 

the human striatum (Bossong et al., 2009).  In mice, place preference has been shown with low 

doses of THC (Lepore et al., 1995) or after priming the mouse with a single dose of THC and 

testing the animal after 24 hours with another single dose of THC (Valjent and Maldonado, 

2000).  Mice (Martellotta et al., 1998), rats (Fattore et al., 2001) and squirrel monkeys (Tanda et 

al., 2000) self-administer THC or WIN55,212-2, and THC microinjections into the nucleus 
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accumbens and ventral tegmental area of rats (Zangen et al., 2006) increase lever pressing.  

Intracranial self-stimulation (ICSS) paradigms with synthetic cannabinoid agonists such as 

WIN55,212-2 show rightward shifts in rats suggesting aversion (Vlachou et al., 2005), but other 

studies with THC show leftward shifts in rats suggesting reward (Gardner et al., 1988; Lepore et 

al., 1996).  In humans, THC is reported to have both rewarding and aversive aspects and those 

who smoke marijuana often report that the positive effects remain stable while certain negative 

effects like dry mouth and lightheadedness are reduced with repeated use (Green et al., 2003).  

This might suggest that less tolerance develops in those brain regions involved with reward.  

CB1Rs also appear to be important for mediating the rewarding properties of other drugs of 

abuse as CB1R knockout mice fail to demonstrate elevated dopamine release in nucleus 

accumbens or substantial intake by ethanol or morphine (Hungund et al., 2003; Mascia et al., 

1999). 

Neocortex 

The neocortex is involved with higher order functions that involve the processing of 

sensory stimuli (olfactory, somatosensory, visual, auditory, associational), the execution of 

complex movements (primary and motor cortices) and executive control/working memory 

(prefrontal cortex and anterior cingulate cortex).  The prefrontal cortex is responsible for the 

planning of movements, plays a role in the consolidation of memories and may be involved with 

reward.   CB1 receptors are located on axon terminals of corticostriatal projections, which may 

contribute to the locomotor suppressant effects of Δ
9 
-THC. CB1Rs are expressed throughout the 

neocortex with the highest expression in layers I and VI and lower levels expressed throughout 

layers II-V (Herkenham, 1991).  The neocortex is comprised of large, glutamate-containing 

pyramidal neurons that are expressed in deep layer III and layer V and serve as the main 
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projections of the cortex to subcortical brain regions and throughout the body. Much smaller 

pyramidal neurons contained in layers II and III project to other cortical areas while layer VI 

pyramidal neurons that have axon collaterals throughout the neocortex and thalamus. The cortex 

is also comprised of several different GABAergic interneurons, which heavily populate layer IV 

(the main destination of thalamic projections to cortex), that are classified by their morphology, 

peptides (i.e., cholecystokinin (CCK), parvalbumin, neuropeptide Y, calretinin) and their 

electrophysiological characteristics (Butt et al., 2005).  CB1Rs are expressed in cholecystokinin 

(CCK)-positive GABAergic interneurons (Tsou et al., 1998), non-CCK GABAergic interneurons 

(Hill et al., 2007) and in some glutamatergic pyramidal neurons throughout the neocortex (Hill et 

al., 2007; Monory et al., 2006); however, they have not been found on parvalbumin interneurons 

(Bodor et al., 2005).  In the prefrontal cortex, CB1Rs are known to exist on adrenergic afferents 

(axonal projections) whose cell bodies most likely originate in the locus coeruleus (Oropeza et 

al., 2007).  No studies to date have reported expression of CB1Rs on dopaminergic afferents 

(Miner et al., 2003). 
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Figure 0.4 Example of direct (D1R) and indirect (D2R) signaling pathways of the caudate-

putamen in the CNS.  MSNs of the D1R/direct pathway project primarily to the substantia nigra 

pars reticulata (SNr) and entopeduncular nucleus (represented here as GPi) while MSNs of the 

D2R/indirect pathway project to the globus pallidus (GPe).  Note that CB1Rs are found in both 

populations.  The primary dopaminergic innervation to the caudate-putamen is the substantia 

nigra pars compacta (SNc).  The primary glutamatergic innervation to the caudate-putamen is 

from the cortex.  Both pathways feed-back on the cortex through the thalamus.  From 

(Benarroch, 2007).    

Basal Ganglia 

The highest expression of CB1Rs in the CNS are found in the output regions of the 

caudate-putamen: substantia nigra pars reticulata, entopeduncular nucleus and globus pallidus 

(Herkenham, 1991) (Figure 0.4).  Moderate expression is also found in the caudate-putamen and 

subthalamic nucleus (Herkenham, 1991).  The predominate neurons in the caudate-putamen are 

GABAergic medium spiny neurons (MSNs), which comprise 95% of the total neuronal 
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population (Kemp and Powell, 1971).  Remaining neurons are interneurons that are subdivided 

by morphology, neuropeptide/ acetylcholinergic production and based on electrophysiological 

properties (Kawaguchi et al., 1995).  CB1Rs are expressed in the MSN population, as well as 

interneurons that primarily express parvalbumin (Fusco et al., 2004).  The MSN population is 

further subdivided into two populations: those containing dopamine type 1 (D1 and D5) receptors  

(D1Rs)/substance P/dynorphin and those containing dopamine type 2 (D2-4) receptors/enkephalin 

(D2R)(Gerfen, 1992; Gerfen et al., 1990; Le Moine et al., 1995).  CB1Rs are located in both 

populations (Hohmann and Herkenham, 2000).  These subpopulations also have specific axonal 

projection.  The D1R/dynorphin MSN population projects primarily to substantia nigra pars 

reticulata (the direct pathway) and the D2R/enkephalin MSN population projects primarily to the 

globus pallidus (the indirect pathway) (Gerfen, 1988).  In regards to motor control by caudate-

putamen, these specific projections produce an opponent process system that produces increases 

in locomotor activity following dopamine release.  Dopamine increases activity in 

D1R/dynorphin MSNs and suppresses activity in D2R/enkephalin MSNs.  This is achieved 

through the differences in coupling of these receptors to specific G-proteins and control of ACS 

activity.  D1Rs couple primarily to Gαs/olf (Drinnan et al., 1991) and stimulate ACS (Kebabian et 

al., 1984; Kebabian et al., 1972) and D2Rs couple primarily to Gαi/o (Kebabian et al., 1984; 

Senogles et al., 1990) and inhibit ACS (Stoof and Kebabian, 1981).  Therefore, dopamine release 

differentially activates the neurons in which these receptors are located.  As further illustration, 

direct injection of GABAA receptor agonists (which suppress neuronal activity, e.g. muscimol) 

into these regions produce opposing effects.  Injection of muscimol into the globus pallidus 

produces locomotor suppression while injection of muscimol into substantia nigra produces 

locomotor activity (Amalric and Koob, 1989).  More recent optogenetic studies have found that 
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selective activation of D1R MSNs in the caudate-putamen increased ambulation while selective 

activation of D2R MSNs reduced ambulation, further providing evidence for the opponent 

process system (Kravitz et al., 2010).  

Although the projections of these neurons primarily terminate in their respective output 

nuclei, axon collaterals from the D1R/dynorphin MSNs also project to the globus pallidus 

(Lindvall and Bjorklund, 1979) and there are GABAergic axonal projections from the globus 

pallidus that terminate in the substantia nigra pars reticulata (Bolam et al., 1993).  The 

preponderance of CB1Rs that are located in the substantia nigra pars reticulata, entopeduncular 

nucleus and globus pallidus originate from cell bodies in the caudate-putamen because lesion of 

the caudate-putamen abolishes the expression of CB1Rs in these areas (Herkenham et al., 1991a).  

This study also found that lesion of the medial forebrain bundle did not affect CB1R levels in the 

caudate-putamen of the lesioned side, suggesting that CB1Rs found in the caudate-putamen do 

not arise from the dopaminergic axonal projections of the medial forebrain bundle.  More recent 

studies using detailed electron microscopy corroborate the finding that CB1Rs are not expressed 

in axons containing dopamine in the caudate-putamen (Fitzgerald et al., 2012).  CB1Rs are found 

on glutamatergic and GABAergic axon terminals in the caudate-putamen (Rodriguez et al., 

2001).  The glutamatergic axons arise from neocortical projections, primarily motor cortices, 

which also contain D2R autoreceptors (Wang and Pickel, 2002).  The GABAergic axons are 

primarily derived from local MSNs as well as GABAergic interneurons, which contain both 

CB1Rs and D2Rs (Bennett and Bolam, 1994).  There are also glutamatergic axonal projections 

from the amygdala and hippocampus that terminate in the caudate-putamen (Gerfen, 1984), but it 

is not clear if these projections also contain CB1Rs. 
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Systemic administration of THC produces primarily locomotor suppression and catalepsy 

(Dewey, 1986) and suppresses total neuronal activity in all regions of the basal ganglia (Shi et 

al., 2005).  Several studies have attempted to dissect which brain regions are responsible for 

these effects, but the results are inconclusive.  Early studies compared the effect of cannabinoids 

on unilateral injection of muscimol into the globus pallidus and substantia nigra.  Injection of 

muscimol into the globus pallidus produces catalepsy while injection of THC enhances the 

muscimol effect, suggesting that globus pallidus could play a role in THC-mediated catalepsy 

(Wickens and Pertwee, 1993).  Unilateral injection of muscimol into the substantia nigra produce 

contralateral circling, a measure of hyperactivity, and 1 µg of THC enhanced this effect while 10 

µg of THC abolished this effect (Wickens and Pertwee, 1995), suggesting a dose-response.  

Intranigral injection of CP55,940 alone also produces contralateral turning (Sanudo-Pena et al., 

1996).  Intrastriatal injections also produce contralateral turning, which is blocked by the D2R 

agonist quinpirole (Sanudo-Pena et al., 1998).   More recently, studies using mice with genetic 

deletion of CB1Rs in either glutamate-, GABA- or D1R-containing forebrain neurons determined 

that cannabinoid-mediated locomotor suppression was reduced only in mice that had genetic 

deletion of CB1Rs in glutamate-containing neurons (Monory et al., 2007).  This study also 

determined that catalepsy was abolished in mice that had genetic deletion of CB1Rs in D1R-

containing neurons.  The source of glutamate-containing neurons that modulate THC-mediated 

locomotor suppression is not clear; however, the subthalamic nucleus, which is part of the basal 

ganglia, may play a part.  The subthalamic nucleus receives GABAergic projections from the 

globus pallidus and sends glutamatergic projections to substantia nigra and globus pallidus 

(Deniau et al., 1978).  Direct injection of CP55,940 into the subthalamic nucleus produces 
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locomotor suppression, suggesting the importance of this region in cannabinoid-mediated 

locomotor suppression (Miller et al., 1998).   

Nucleus accumbens 

The nucleus accumbens (ventral striatum) is similar to the caudate-putamen in that it 

contains D1R/dynorphin and D2R/enkephalin MSN populations (Curran and Watson, 1995) that 

project to the ventral tegmental area and ventral pallidum, respectively. There is some evidence 

that D1R/dynorphin MSNs also express the D3, D2R subtype (Ridray et al., 1998).   The nucleus 

accumbens is subdivided into the core and shell areas, which are differentiated mainly by 

calbindin staining that is strongly stained in the core but much lighter in the shell (Groenewegen 

et al., 1999).  Functionally, the nucleus accumbens shell may play a more important role in drug 

reward because cocaine, morphine and amphetamine generally increase dopamine in the shell 

but not the core (Pontieri et al., 1995), and several drugs of abuse are self-administered when 

injected directly into the shell but not the core (Di Chiara et al., 2004).  CB1Rs are located 

predominantly on axon terminals in the shell, and are also found on both D1R and D2R MSNs 

(Pickel et al., 2004).  Despite the location of CB1Rs in nucleus accumbens and their regulation of 

dopamine release (Wu and French, 2000), preclinical measures of reward-related behavior, 

especially in rodents, have failed to provide clear results regarding THC or other cannabinoids in 

regards to their reward profile (Tanda and Goldberg, 2003).  

Other regions  

CB1Rs are primarily expressed by GABAergic CCK-containing basket cells of both the 

hippocampus (Freund and Hajos, 2003; Mackie, 2005) and amygdala (Katona et al., 2001; 

Marsicano and Lutz, 1999; Tsou et al., 1998).  The hippocampus contributes to learning behavior 

and cannabinoids are known to disrupt tasks such as the delayed nonmatch-to-sample task and 
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Morris water maze task, which involve this region (Hampson and Deadwyler, 1998; Varvel and 

Lichtman, 2002).  The amygdala contributes to anxiety- and fear-related behaviors and the 

ventral hippocampus can contribute to anxiety-related behaviors (Rubino et al., 2008).  Focal 

injection of cannabinoids into the amygdala produces anxiety-related behaviors while focal 

injection into ventral hippocampus produces anxiolytic-related behaviors (Rubino et al., 2008).  

Systemic injection of cannabinoids produces anxiolytic-related behaviors at low doses and 

anxiogenic-related behaviors at higher doses (Parolaro et al., 2010).  In amygdala, dopamine is 

actually increased during stress and enhances amygdala-related behavior (Inglis and 

Moghaddam, 1999; Rosenkranz and Grace, 1999).  Further, the amygdala has been implicated in 

drug reinstatement, as shown by its involvement in consolidation of drug-paired cues (e.g. 

associated with conditioned place preference paradigms) (Fuchs and See, 2002; Luo et al., 2013). 

The hypothalamus regulates mostly autonomic, metabolic and circadian rhythm 

functions.   The medial preoptic area controls thermoregulation and direct injection of 

WIN55,212-2 into this region produces hypothermia (Rawls et al., 2002); however, THC-

mediated hypothermia is still present in rats with lesions to this area (Schmeling and Hosko, 

1976).  The hypothalamus receives inputs from the limbic system and midbrain.  The thalamus is 

a gateway between the cortex and the rest of the CNS and mediates sensory perception as well as 

motor function.  Although CB1R expression and G-protein signaling is low in thalamus, there is 

high CB1R expression in the lateral habenula (Tsou et al., 1998).   There is low expression of 

CB1Rs in periaqueductal gray and this region is partly responsible for the antinociceptive 

properties of cannabinoids (Herkenham, 1991; Lichtman and Martin, 1991).  The spinal cord is 

also involved in the antinociceptive properties of cannabinoids where CB1Rs are found in the 

dorsal root ganglia nociceptive neurons.  Finally, very high expression of CB1Rs is found in the 
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molecular layer of cerebellum, a region that is important for motor coordination.  Further, some 

evidence suggests that cerebellum is involved in the withdrawal signs (Tzavara et al., 2000) 

following cannabinoid abstinence and for the hyperreflexia observed after cannabinoid 

administration (Patel and Hillard, 2001). 

0.5 CB1R signaling 

CB1Rs belong to the rhodopsin-like class A family of G-protein coupled receptors 

(GPCRs), which contain seven transmembrane domains with an extracellular glycosylated amino 

terminus and an intracellular carboxyl-terminus.  G-proteins are composed of three separate 

subunits: Gα, Gβ and Gγ.    In the inactive confirmation, guanosine diphosphate (GDP) binds to 

the α subunit, which forms a heterotrimeric complex with the βγ dimer that binds.  Agonist 

binding to the receptor results in the exchange of guanosine triphosphate (GTP) with GDP.  In 

this active state, the βγ dimer dissociates from the α subunit providing two distinct signaling 

mechanisms (Childers et al., 1993).  The GPCR acts as a catalyst for this exchange and allows 

for the activation of several G-proteins, which amplifies signaling (Breivogel et al., 1997).  

CB1Rs typically couple to Gαi/o subunits, although some research suggests CB1R coupling to Gαs 

(Bonhaus et al., 1998; Glass and Felder, 1997) and Gαq/11 (De Petrocellis et al., 2007; Lauckner 

et al., 2005).  G-protein coupling can occur at the intracellular loops (Abadji et al., 1999) and the 

c-terminus (Howlett et al., 1998; Mukhopadhyay et al., 1999) of CB1Rs.  The activation of Gαi  

subunits typically leads to an inhibition of ACS and a decrease in accumulation of cAMP 

(Smigel et al., 1984); however, it should be noted that  co-expression of CB1Rs and ACS 

isoforms I, III, V, VI or VIII decreases the accumulation of cAMP whereas cAMP accumulation 

increases when CB1Rs are co-expressed with AC isoforms II, IV, and VII (Rhee et al., 1998). 

CB1Rs modulate multiple downstream signaling events via activation of Gαi/o and Gβγ  subunits, 
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including phosphorylation of p42/p44 mitogen activated protein kinases (MAPK), which are also 

known as extracellular signal-regulated kinases (ERK1/2) (Bouaboula et al., 1995; Derkinderen 

et al., 2001; Galve-Roperh et al., 2002), inhibition of N-type and P/Q type voltage dependent 

Ca
+2

 channels (Pan et al., 1996; Twitchell et al., 1997) and stimulation of inward rectifying K
+
 

channels (Mackie et al., 1995; Vasquez et al., 2003).  CB1Rs can also inhibit Na
+
 channels 

(Nicholson et al., 2003), stimulate phospholipases C and A2 (PLC, PLA2) (Hunter et al., 1986), 

activate c-Jun N-terminal kinase (JNK) 1 and 2 (Rueda et al., 2000b), p38 MAPK (Rueda et al., 

2000a), nitric oxide (Prevot et al., 1998) and protein kinase B (also known as thymoma viral 

proto-oncogene (AKT) (Gomez et al., 2011).  CB1Rs can also activate the factor associated with 

neutral sphingomyelinase (FAN), which increases ceramide production in a pertussis toxin 

independent manner (Sanchez et al., 2001). 

GPCRs can also signal through the recruitment of scaffolding proteins, such as arrestins.  

Studies using channel rhodopsin led to the discovery of a 48 kDa protein that bound to 

phosphorylated rhodopsin that is now known as arrestin1 or visual arrestin (Wilden et al., 1986).  

In 1990, a similar molecule was found to inhibit function of the β2-adrenergic receptor (Lohse et 

al., 1990) and was termed β-arrestin1.  Soon after, β-arrestin2 was discovered and shown to 

interact with the β2-adrenergic receptor (Attramadal et al., 1992).  The discovery of the arrestins 

was in part due to the isolation and purification of the G-protein receptor kinase 2 (GRK2, 

referred to β adrenergic receptor kinase at the time) (Benovic et al., 1987).  Arrestins were 

initially identified as accessory proteins that promote desensitization (a reduction in G-protein 

activation) of GPCRs.  However, more recent studies have determined that βarrestins can recruit 

c-Src, a nonreceptor tyrosine kinase that activates ERK 1/2, (DeFea et al., 2000; Luttrell et al., 

1999) through a βarrestin2, v-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1), mitogen 
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activated protein kinase kinase 1 (MEK1) and ERK1/2 scaffolding complex (Luttrell et al., 

2001).  βarrestins can also recruit JNK3 into a scaffolding complex (McDonald et al., 2000) and 

activate PI3K through an AKT scaffolding complex (Povsic et al., 2003) that can also recruit 

protein phosphatase 2A (PP2A) in the brain (Beaulieu et al., 2005). CB1Rs are desensitized by 

mechanisms that involve GRK3 and βarrestin2 (Jin et al., 1999), therefore CB1Rs might also 

activate these signaling proteins through βarrestin scaffolding, as shown for the β2-adrenergic 

receptor.  

Homo- and hetero-dimerization of GPCRs also provides a novel mechanism of GPCR 

signaling.  Evidence for GPCR dimerization was initially provided by studies showing that 

GABAB receptors form obligatory homodimers (Kubo and Tateyama, 2005).  Histological 

techniques, such as electron microscopy and fluorescence resonance energy transfer (FRET), 

showed that the CB1Rs form homodimers and heterodimers with mu, kappa, and delta-opioid 

receptors (MOR, KOR, DOR), orexin 1, adenosine type 2A (A2A), β2-adrenergic receptors and 

D2Rs (Hudson et al., 2010; Wager-Miller et al., 2002).   Electron microscopy studies have 

supported dimerization between CB1Rs and MORs in the nucleus accumbens (Pickel et al., 

2004).  Likewise, functional studies conducted in striatal cell membrane homogenates showed 

that the MOR-selective agonist DAMGO reduced WIN55,212-2 stimulated [
35

S]GTPγS 

activation (Rios et al., 2006).  In contrast, a study using transfected Xenopus oocytes showed a 

cooperative effect between CB1Rs and MORs (Hojo et al., 2008).  Heterodimerization of D2Rs 

and CB1Rs has been shown functionally in cell culture and in vitro with striatal cultures (Glass 

and Felder, 1997; Jarrahian et al., 2004; Kearn et al., 2005; Marcellino et al., 2008), in which 

agonist stimulation of CB1Rs increased AC activity, perhaps through Gαs/olf activation.  CB1R 

and D2R agonists alone inhibited cAMP production but simultaneous introduction of agonists for 
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both receptors led to cAMP accumulation.  A similar study showed that A2A receptors co-

localized with CB1 Rs in vitro and that A2A receptor antagonist administration in rats abolished 

the inhibitory motor effects of WIN55,212-2 (Carriba et al., 2007).  Indirect evidence has also 

shown that that D2R and A2A receptors promote cannabinoid-mediated increases in AC activity 

in the striatum.  Administration of CP55,940 in mice with genetic deletion of either D2R or A2A 

receptors abolished phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 

Mr32 kDA (DARPP-32) at threonine 34 (Andersson et al., 2005) (Figure 0.5).   Phosphorylation 

of DARPP-32 at this site was also abolished in A2A knockout mice following THC 

administration (Borgkvist et al., 2008).  DARPP-32 (Hemmings et al., 1984b; Ouimet et al., 

1984; Walaas et al., 1983; Walaas and Greengard, 1984) is highly expressed in dopaminoceptive 

neurons of striatum and is expressed in all neuronal compartments.  DARPP-32 is 

phosphorylated by protein kinase A (PKA) at threonine 34 and becomes an inhibitor of protein 

phosphatase 1 (PP1) (Hemmings et al., 1984a; Huang et al., 1999).  Therefore, it is possible that 

dimerization of CB1Rs with either D2Rs or A2A receptors increases ACS activity, which 

increases PKA activity (Walsh et al., 1968) and leads to phosphorylation of DARPP-32 at 

threonine 34. 
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Figure 0.5 Regulation of DARPP-32 by both glutamate and dopamine in the striatum.  From 

(Nishi et al., 2002). 

DSI and DSE 

CB1Rs are predominantly expressed presynaptically and inhibit neurotransmitter release 

(Ishac et al., 1996; Kathmann et al., 1999; Nakazi et al., 2000; Shen et al., 1996; Szabo et al., 

1999). Studies on the subcellular localization of CB1Rs revealed that they are highly expressed 

on axon terminals and preterminal segments (Hajos et al., 2000; Katona et al., 2001). 

CB1Rs play a role in refining neurotransmission by reducing presynaptic release of 
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neurotransmitters through the signaling systems described above.  Unlike neurotransmitters, 

CB1Rs are produced on demand and inhibit presynaptic neurotransmitter release through 

retrograde transmission primarily via release of 2-AG (Marsicano et al., 2003).  In the 

hippocampus, excitation of CA1 pyramidal neurons leads to an influx of calcium, which 

promotes 2-AG synthesis in the neuron and 2-AG is released retrogradely and inhibits GABA 

release from nearby interneurons (Kano et al., 2009).  This process is referred to as 

depolarization-induced depression of inhibition (DSI).   Suppression of glutamate release on the 

projection neuron can also occur through the same process of retrograde signaling by 2-AG and 

is referred to as depolarization-induced depression of excitation (DSE).  DSI and DSE were 

discovered to be mediated by CB1Rs in both the cerebellum and hippocampus (Kreitzer and 

Regehr, 2001; Ohno-Shosaku et al., 2001; Ohno-Shosaku et al., 2012).   The necessity of CB1Rs 

in producing DSI and DSE is demonstrated by the loss of these processes in mice with genetic 

deletion of CB1Rs.   2-AG is also necessary because these processes are lost in mice with genetic 

deletion of DAGL (Gao et al., 2010; Uchigashima et al., 2007).  The duration of DSI/DSE is also 

dependent on the catabolism of 2-AG by DAGL (Hashimotodani et al., 2008) and breakdown of 

2-AG by presynaptic MAGL (Hashimotodani et al., 2007).    
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Figure 0.6 Schematic representation of CB1R desensitization and downregulation following 

repeated cannabinoid administration.  When an agonist binds, it causes dissociation of the Gα, 

subunit which leads to the phosphorylation of the receptor by GRK.  β-arrestins bind to the 

phosphorylated receptor, which leads to internalization of the receptor.  The receptor is either 

recycled back to the membrane or degraded in endosomes, which is mediated by GASP.  From 

(Smith et al., 2010). 
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0.6 Tolerance, Desensitization and Downregulation following repeated THC administration   

Tolerance develops to the in vivo effects of THC following repeated administration.  

Tolerance is a reduction in the effect of a drug following repeated administration of that drug. 

Repeated administration of THC, synthetic cannabinoid agonists and inhibition of 2-AG 

degradation in rodents produce tolerance to cannabinoid-mediated antinociception, hypothermia, 

catalepsy, and locomotor suppression (Carlini, 1968; Gonzalez et al., 2005; Pertwee et al., 1993; 

Schlosburg et al., 2010), and cross-tolerance develops among the different cannabinoid drugs 

(Fan et al., 1994). Surprisingly, tolerance does not develop to THC-mediated mouse killing 

(Miczek, 1979) and for some of the memory impairing effects of cannabinoids (Barna et al., 

2007; Boucher et al., 2009; Ferraro and Grilly, 1974) but tolerance has been reported for the 

delayed match to sample performance test (Deadwyler, 1995). Studies in humans have 

demonstrated that tolerance develops to the cardiovascular (Benowitz and Jones, 1975) and 

memory/cognitive impairing (D'Souza et al., 2008) effects of cannabinoids whereas little 

tolerance develops to the motoric or “subjective high” effects (D'Souza et al., 2008; Haney et al., 

1999a, b).  Adaptation to chronic administration of cannabinoids is minimally represented by 

pharmacokinetic changes (Dewey et al., 1973; Martin et al., 1976), but relies more on 

pharmacodynamic changes, which include CB1R desensitization and downregulation (Sim-

Selley, 2003).   

The mechanisms underlying G-protein coupled receptor (GPCR) desensitization and 

downregulation were initially determined using heterologously expressed β-adrenergic receptors 

(Gainetdinov et al., 2004; Inglese et al., 1993; Lefkowitz, 1998).  Desensitization involves the 

phosphorylation of specific residues on the C-terminus of the receptor that causes a 

conformational change in the receptor (Lefkowitz, 1998).  This process can occur through either 
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a heterologous or homologous pathway.  Heterologous phosphorylation involves promiscuous 

protein kinases like PKA and PKC that phosphorylate either the active or inactive state of the 

receptor, typically through activation of other receptors (Chu et al., 2010).  Homologous 

desensitization is more conservative and leads to phosphorylation of only activated receptors.  

This latter form of desensitization occurs in response to phosphorylation by G-protein receptor 

kinases (GRKs).  The recruitment of GRKs to agonist-activated receptors occurs through Gβγ 

sequestration of GRKs to receptors (Daaka et al., 1997).  Phosphorylation of specific residues on 

GPCRs facilitates the binding of arrestin molecules that reduce both G-protein coupling and 

initiate the internalization of receptors, and, as discussed previously, can lead to other signaling 

events.  Specific residues of the CB1R have been associated with receptor adaptions.  The c-

terminus of CB1Rs is important for desensitization and requires mutation of four separate 

phosphorylation sites to suppress internalization (Daigle et al., 2008a), and residues between 

V459 and V464 are necessary for internalization (Hsieh et al., 1999).  S425 and S429 are 

required for desensitization, but not endocytosis (Hsieh et al., 1999).  L404F mutation can 

enhance agonist-induced trafficking (Anavi-Goffer et al., 2007).  Truncation of the receptor at 

residue 417 attenuates desensitization (Jin et al., 1999).  Mutation of CB1R residues 425 and 429 

does not alter β-arrestin recruitment or internalization, but attenuate ERK 1/2 phosphorylation 

(Daigle et al., 2008b) and GIRK channel activation (Jin et al., 1999).  Class A GPCRs 

preferentially bind to β-arrestin 2 (Oakley et al., 2000); however, CB1Rs can also interact with β-

arrestin1 (Bakshi et al., 2007).  In the brain, the major β-arrestin isoforms are β-arrestin1 and β-

arrestin2, each of which is uniquely distributed in the CNS (Gurevich et al., 2002) (Figure 0.6).    

 CB1R adaptation in response to repeated cannabinoid treatment has been investigated 

using both cell and animal models.  There are seven known mammalian GRK isotypes whose 
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expression differs by brain region in the CNS. GRK2 and GRK3 are the most highly expressed 

in the CNS, although GRK4 is also expressed (Arriza et al., 1992).  The role of GRK and β-

arrestin in mediating CB1R desensitization has been demonstrated in the Xenopus oocyte 

expression system (Jin et al., 1999).  Repeated THC administration changes the expression of 

both GRKs and β-arrestins in a region-dependent manner (Rubino et al., 2006).  However, it is 

unclear how these regional differences affect desensitization. The rate of internalization 

correlates with the relative efficacy of cannabinoid agonists to activate G-proteins.  Lower 

efficacy agonists, like THC, produce a greater magnitude of internalization/desensitization (Wu 

et al., 2008).  CB1Rs are internalized through clathrin-coated pits into early endosomes (Hsieh et 

al., 1999).  At the molecular level, repeated cannabinoid exposure results in the functional 

uncoupling of CB1Rs from G-proteins (desensitization) (Sim et al., 1996) and agonist-promoted 

internalization (Jin et al., 1999); followed by either receptor degradation in lysosomes 

(downregulation) or recycling to the cell membrane (resensitization) (Tappe-Theodor et al., 

2007).  Downregulation involves targeting of CB1Rs for degradation, which appears to require 

G-protein-associated sorting protein 1 (GASP1), a protein that has been shown to interact with 

CB1Rs and was required for agonist-induced downregulation of CB1Rs in spinal neurons (Tappe-

Theodor et al., 2007).   Genetic deletion of GASP1 abolishes CB1R downregulation in the spinal 

cord and cerebellum of repeated WIN55,212-2-treated mice that is accompanied by a reduction 

in tolerance to cannabinoid-mediated antinociception, motor incoordination, and locomotor 

suppression (Martini et al., 2010; Tappe-Theodor et al., 2007). 

  Studies in rodents have determined that the development of desensitization and 

downregulation of CB1Rs following repeated THC administration depends on both the dose and 

length of cannabinoid administration, while acute doses of CB1R agonists do not produce 
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significant desensitization and downregulation in vivo ((Sim-Selley, 2003), Table 0.1). There are 

also brain regional differences in the development of desensitization and downregulation when 

cannabinoid dose and treatment time are constant ((Sim-Selley, 2003), Table 0.1).  Specifically, 

regions of the basal ganglia (caudate-putamen, nucleus accumbens, globus pallidus and 

substantia nigra) show lower magnitude of desensitization and downregulation compared to 

areas like the hippocampus and periaqueductal gray (Sim-Selley, 2003), Table 0.1).  

Functionally, cannabinoid-mediated catalepsy and locomotor suppression, behaviors associated 

with the basal ganglia, exhibit less tolerance when compared to responses such as hypothermia 

(medial preoptic area) and antinociception (periaqueductal gray and spinal cord) (Bass and 

Martin, 2000; Whitlow et al., 2003).  Both post-mortem studies and studies in live subjects using 

positron emission topography (PET) have found region-dependent differences in CB1R levels in 

brains from marijuana users compared to non-users (Hirvonen et al., 2012; Villares, 2007). 

These findings correspond to studies showing that more tolerance develops to the memory 

impairing effects of THC, which is associated with hippocampal function compared to the 

motoric or “subjective high” effects of THC, which is associated with basal ganglia function 

(D'Souza et al., 2008).  PET studies also showed differences in recovery of CB1Rs after cessation 

of marijuana treatment (Hirvonen et al., 2012), which agreed with previous studies in rodents 

(Sim-Selley et al., 2006).   In both studies, basal ganglia regions recovered faster than areas like 

the hippocampus.  
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TABLE 0.1 Summary of studies that have examined the effect of chronic cannabinoid 

treatment on several parameters of CB1R function.  Data from time course studies is not 

included because results vary based on duration of treatment. Adapted from (Sim-Selley, 

2003) 
 

     Treatment         Tolerance     Receptor Binding   CB1 mRNA   [
35

S]GTPγS cAMP/PKA 

THC (10 mg/kg) 

2X/day for 6.5 days 

Mice 

SA No change whole 

brain 

No change whole 

brain 

  

THC (10 mg/kg) 
2 weeks, rat 

CP (1,3,10 mg/kg) 

2 weeks rat 

Open field 
 

Open field 

Dec: CPu 
 

Dec. str 

   

THC (6.4 mg/kg) 

7 days, rat 

SA Dec str 

 

   

CP (0.4 mg/kg) 

11 days, rat 

THC (10 mg/kg) 

11 days rat 

SA, 

analgesia 

 Dec Cpu 

No chg others 

 

Dec Cpu 

No chg others 

  

THC (3 mg/kg) 

5 days, rat 

 

Anandamide 
(3mg/kg) 

5 days, rat 

 Dec str 

Inc hip, cblm 

 

Inc cblm, hip 
No chg str 

 

 

  

CP (2 mg/kg) 

2X/day for 6.5 days 

Hypomot 

Hypotherm 

immobil 

Dec cblm Inc cblm  No chg in 

CB-

inhibited in 

cblm 

THC (10 mg/kg) 

21 days, rat 

   Dec Cpu, GP, 

ctx, hip, cblm 

 

THC (10 mg/kg) 

5 days, rat 

SA Dec Cpu ctx, hip, 

cblm 

No chg GP 

Inc str 

No chg hip, cblm 

  

THC (10 mg/kg) 

5 days, rat 

 Dec cblm, CPu, ctx 

No chg GP 

Dec CPu 

No chg cblm, 

ctx, GP 

No chg Cpu, 

GP 

 

R-methanandamide 

(10 mg/kg) 
5 days, rats 

 Dec lCPu, cblm 

No chg hip, ctx, GP 

Dec CPu, hip 

No chg hip, ctx 

No chg lCPu, 

ctx, hip 

 

Anandamide (20 

mg/kg) 

15 days, rat 

tetrad No chg str, hip, ctx, 

cblm 

 Dec str, ctx, 

hip, cblm 

No chg str, 

ctx, cblm 

THC (15 mg/kg) 

2X/day for 15 days, 

rat 

analgesia Dec str, hip, ctx, 

cblm 

  Basal 

cAMP/PKA

Inc cblm, 

str, ctx 

CP (0.4 mg/kg) 

2X/day for 6.5.days 

rat 

 Dec str, ctx, hip, GP, 

cblm 

 Dec str, ctx, 

hip 

No chg cblm 

No chg str, 

ctx, hip, 

cblm 

THC (10-160 

mg/kg)  

15 days, mice 

SA, 

hypotherm 

SA, 

Dec Cpu, GP, ctx, 

hip, cblm 

Dec Cpu, GP, ctx, 

 Dec Cpu, GP, 

ctx, hip, cblm 

Dec Cpu, GP, 
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WIN (3-48 mg/kg) 

15 days, mice 

hypotherm hip, cblm ctx, hip, cblm 

 

0.7 Signaling pathways known to modulate CB1R desensitization and downregulation 

The signaling mechanisms that underlie these brain-region dependent differences in 

desensitization and downregulation are not known, but studies have suggested a role for ERK 

and β-arrestin2.  The role that ERK activation might play in CB1R adaptation following repeated 

THC administration was further studied by Rubino et al. (2005). ERK activity was not increased 

following acute THC treatment in mice treated with SL327 (a MEK inhibitor) or Ras-GRF1 

knockout mice (Rubino et al., 2005).  Furthermore, tolerance to THC-mediated locomotor 

suppression was prevented in these mice after treatment with 10 mg/kg THC b.i.d for 4.5 days.  

In agreement with these findings, autoradiographic studies using [
3
H]CP55,940 binding 

determined that CB1Rs were not significantly decreased in the caudate-putamen or cerebellum, 

but were decreased in the hippocampus of mice that received SL327 treatment and in Ras-GRF1 

knockout mice.  Interestingly, Ras-GRF1 knockout mice had reduced CB1R binding in the 

prefrontal cortex compared to wild type controls.  This result was not seen with SL327 treated 

mice, suggesting that the loss of Ras-GRF1 affected CB1R levels through a different mechanism 

than MEK inhibition alone. CP55,940-stimulated [
35

S]GTPγS binding was not reduced in the 

caudate-putamen or hippocampus following repeated THC administration in Ras-GRF1 mice 

compared to controls, which agrees with the in vivo data.  CP55,940-stimulated [
35

S]GTPγS 

binding was reduced in Ras-GRF1 knockout compared to wild type mice in the prefrontal cortex 

and cerebellum.  Inhibition of MEK using SL327 prevented CB1R desensitization in the 

prefrontal cortex, caudate-putamen and cerebellum, but not in the hippocampus. Overall, these 
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data suggest that ERK plays a role in modulated CB1R adaptations in a brain region-dependent 

way. 

  Our laboratory has reported that β-arrestin2 contributes to brain-region dependent 

differences in CB1R desensitization and downregulation and in the development of tolerance to 

THC-mediated in vivo effects by using β-arrestin2 knockout mice (Nguyen et al., 2012).  

Vehicle-treated β-arrestin2 knockout mice had enhanced THC-mediated antinociception and 

hypothermia and increased [
35

S]GTPγS binding in the piriform cortex, auditory and visual 

cortices and caudal hippocampus.  After receiving twice-daily injections of 10 mg/kg THC for 

6.5 days, β-arrestin2 knockout mice exhibited significantly greater tolerance to THC-mediated 

catalepsy and attenuated tolerance to antinociception.  At the receptor level, β-arrestin2 knockout 

mice exhibited greater desensitization in the piriform cortex, auditory and visual cortex, 

somatosensory cortex, globus pallidus, hypothalamus and substantia nigra and attenuated 

desensitization and downregulation in the cerebellum, caudal periaqueductal gray and spinal cord 

(Nguyen et al., 2012).  These results suggest that although ERK and β-arrestin2 might contribute 

to brain region-dependent differences in CB1R adaptations, other factors must be involved.     

 

0.8 Induction of transcription factors by cannabinoids 

Transcription factors might also contribute to regional differences in CB1R adaptions.  

Similar to the development of desensitization and downregulation, regional difference exist in 

the CNS regarding the induction of transcription factors by cannabinoid agonists.  The regulation 

of gene expression by CB1Rs is likely to begin with the activation of immediate early genes 

(IEGs), which are transcription factors that regulate the expression of downstream target genes. 

Immediate early genes can be constitutively expressed or induced by stimuli.  For cannabinoids, 
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zif268 (or krox24), cAMP response element binding protein (CREB) and the Fos and Jun 

families of IEGS have been investigated most extensively.  CREB is constitutively expressed and 

its binding to DNA is regulated by phosphorylation by upstream kinases.  Inducible IEGs include 

zif268, the Fos (c-Fos, FosB, Fos-related antigen 1 (Fra-1), Fra-2 and ΔFosB) and Jun (c-Jun, 

JunB and JunD) families of transcription factors, which form AP-1 complexes that bind to AP-1 

consensus sites on target genes. Inducible transcription factors are basally expressed in the brain 

and exhibit species-specific regional differences in basal expression (Herdegen and Leah, 1998).  

Transcriptional repressors also exist, such as cAMP response-element modulator (CREM), which 

reduces CREB transcription, and Fos-related antigen 1 (Fra1), which reduces the transcriptional 

ability of AP-1 complexes (Foulkes and Sassone-Corsi, 1992; Yoshioka et al., 1995).  IEGs can 

also induce or repress the expression of other IEGs.  For example, CREB can induce c-fos 

mRNA (Sheng et al., 1991), whereas ΔFosB, a truncated splice variant of FosB, can repress c-fos 

mRNA expression through epigenetic regulation by recruitment of histone deacetylase 1 

(HDAC1) (Renthal et al., 2008).  Co-regulation adds to the complexity of understanding 

interactions among IEGs and provides multiple points for interactions between these signaling 

pathways.  Interpretation of results with cannabinoids is further complicated by differences in the 

particular drugs and doses administered, temporal paradigm and species examined. The role of 

specific IEGs in directly modulating the CB1R gene, CNR1, has not been fully characterized, but 

a recent study in a mouse model of Huntington’s disease suggests that the repressor element 1 

silence transcription factor (REST) can regulate transcription of CB1Rs (Blazquez et al., 2011). 

Although there are numerous transcription factors found in mammalian cells, the majority 

of research has focused on the induction of zif268 (also known as Krox-24), CREB the Fos 

family of transcription factors (c-Fos, Fosb, ΔFosB, Fra-1 and Fra-2) and the Jun family of 
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transcription factors (c-Jun, JunB and junD) (Lazenka et al., 2013).  Mailleux et al. (1994) first 

reported that zif268 mRNA increased in the cingulate cortex, fronto-parietal cortex and caudate-

putamen of rats 20 minutes after acute THC (5 mg/kg) injection. Separate studies in the caudate-

putamen showed that zif268-immunoreactive (-ir) cells were restricted to striosomes when 

assessed 2 hours after injection of CP55,940 (2.5 mg/kg) (Glass and Dragunow, 1995).  Studies 

in the hippocampus showed that acute THC (1 mg/kg) increased zif268 mRNA in CA1 and CA3, 

but not dentate gyrus, in CD1 mice (Derkinderen et al., 2003).  Zif268 is increased in the 

hippocampus of C57Bl/6J mice during learning tasks such as the Morris Water Maze task, but 

repeated administration of THC (1 mg/kg, 11 days) was shown to reduce zif268 in the 

hippocampus, suggesting zif268 could contribute to the memory impairing effects of THC 

(Boucher et al., 2009).  This group also found a decrease in zif268 in caudate-putamen of these 

mice.  The effects of THC have also been tested in zif268 knockout mice, but no genotype-

specific differences were found for cannabinoid-induced analgesia or spontaneous withdrawal 

(Tzavara et al., 2001). 

CREB has been proposed to be an important mediator of the effects of drugs of abuse 

(Nestler, 2004).  Initial studies showed no changes in CREB bound to DNA in the caudate-

putamen or cerebellum of rats that received THC (5-40 mg/kg b.i.d) for 5 days with brain 

collection 21 days after the last injection (Rubino et al., 2003). Subsequent studies using acute 

THC (15 mg/kg) administration found increased pCREB levels in the caudate-putamen, 

hippocampus and cerebellum, but not prefrontal cortex, of rats when measured 30 minutes 

following injection (Rubino et al., 2004).  A different regional pattern emerged following 

repeated THC administration (15 mg/kg, b.i.d., 6.5 days), whereby pCREB was only increased in 

the prefrontal cortex of THC-treated rats.  This finding could indicate that tolerance developed to 
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THC-induced activation of CREB in the other regions.  A separate study examined CREB in the 

granule cell layer of the rat cerebellum.  Results showed an increase in pCREB-ir cells in the 

granule cell layer following acute administration of 5 or 10 mg/kg THC, whereas repeated THC 

(10 mg/kg q.d., 4 weeks) administration produced a decrease in pCREB-ir that persisted for 3 

weeks (Casu et al., 2005).  This finding highlights the temporal nature of CREB activation, and 

suggests that alterations in CREB activity can persist after cessation of drug treatment.  

Measurement of CREB in the hippocampus following repeated THC administration has provided 

varying results. In one study, CREB and pCREB were decreased in the hippocampus in C57BL6 

mice administered THC (10 mg/kg q.d.) for 7 days with levels assessed 24 hours after the last 

administration (Fan et al., 2010).  Another group reported that repeated THC (10 mg/kg, b.i.d.) 

administration in rats for 4.5 days increased pCREB when tested 30 minutes after the final 

administration (Rubino et al., 2006).  Differences in results could reflect methodological 

differences between the studies, most notably the survival time following final THC injection.     

Fos (c-Fos, FosB, fos-related antigen 1 (Fra-1), Fra-2 and ΔFosB) and Jun (c-Jun, JunB 

and junD) families of transcription factors form AP-1 complexes that bind to AP-1 consensus 

sites on target genes.  Mailleux et al. (1994) showed that c-Fos-ir and c-Jun-ir cells increased in 

the cingulate cortex when measured 20 minutes after THC (5 mg/kg) injection, whereas only c-

Fos-ir cells increased in the fronto-parietal cortex and caudate-putamen.  Subsequent studies 

showed an increase in c-Fos-ir cells in the caudate-putamen and nucleus accumbens of rats when 

measured 2 hours after THC injection (10 mg/kg) (Miyamoto et al., 1996).  In this same study, 

pretreatment with a dopamine D1 receptor (D1R) antagonist (SCH-23390, 0.32 mg/kg), but not a 

D2 receptor (D2R) antagonist ((-)-sulpiride,100 mg/kg, i.p.), significantly attenuated c-Fos 

induction in these regions, suggesting that c-Fos induction was due to CB1R-mediated dopamine 
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release and not through direct CB1R signaling.  The same group measured c-Fos-ir following 

repeated THC administration (10 mg/kg, q.d., 4 days) at 2 hours after final injection and 

compared the results to acute induction (Miyamoto et al., 1997).  Repeated THC administration 

induced fewer c-Fos-ir cells as compared to acute administration, suggesting the development of 

tolerance.  A similar study also suggested that tolerance developed to the induction of c-Fos in 

the prefrontal cortex and cerebellum following repeated, but not acute, THC (15 mg/kg) 

administration (Rubino et al., 2004).     

Fewer studies have assessed FosB and its truncated isoforms (ΔFosB, Fra-1 and Fra-2) 

following cannabinoid treatment.  Fos antigens are generally induced rapidly and transiently 

after acute drug administration (e.g. c-Fos).  However, ∆FosB, a C-terminally truncated splice 

variant of FosB, is stable and accumulates with repeated induction over time (e.g. during 

repeated drug treatment), and can be detected in neurons for several weeks after cessation of 

drug treatment (Chen et al., 1997; Perrotti et al., 2005; Ulery et al., 2006).  ΔFosB could 

therefore be important in regulating the long-term effects of repeated cannabinoid administration.  

THC administration increased Fos proteins (c-Fos, FosB, Fra-1 and Fra-2) and AP-1 

DNA binding in the nucleus accumbens when measured one hour following administration of 10 

or 15, but not 5, mg/kg of THC in rats (Porcella et al., 1998). AP-1 binding in the cingulate 

cortex and caudate-putamen was increased only after the highest dose of THC.  In the cingulate 

cortex, this occurred in conjunction with increased c-Fos FosB, Fra-1 and Fra-2, whereas in the 

caudate-putamen, only c-Fos and FosB were significantly induced.  ΔFosB was not significantly 

induced in any region examined, which is consistent with its low level of induction after a single 

drug injection.  Induction of c-Fos, FosB, Fra-1 and Fra-2 was CB1R-mediated because it was 

blocked by pretreatment with the antagonist SR141716A (Rimonabant) (Porcella et al., 1998).  
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Regional assessment of FosB following acute and repeated THC administration showed 

increased FosB in prefrontal cortex and hippocampus only after repeated THC administration 

(Rubino et al., 2004). The regional induction of ∆FosB following repeated THC administration 

has only been recently tested.  Repeated THC administration significantly increased the number 

of FosB/ΔFosB-ir cells in the nucleus accumbens core with trends toward increases in the 

nucleus accumbens shell and caudate-putamen (Perrotti et al., 2008).   

TABLE 0.2 Summary of brain region-dependent changes in immediate early gene (IEG) 

expression following acute or repeated THC administration.  Adapted from (Lazenka et al., 

2013) 

Transcription factor 

Treatment 

(time after last 

injection) 

Increase in brain region Decrease in brain region Measure 

Zif268 
    

Acute 
5 mg/kg THC 

(20 min) 

Cingulate cortex, fronto-parietal 

and caudate-putamen 
 

mRNA 

immunohistochemistry 

Acute 
2.5 mg/kg 

CP55,940 (2 h) 
Striosome of caudate-putamen 

 

mRNA 

immunohistochemistry 

Acute 
1 mg/ml THC 

(60 min) 

Hippocampus 

CA1 and CA3 
 

mRNA 

immunohistochemistry 

Repeated 1 mg/kg THC 

q.d. for 11 days 

(90 min after 

last probe trial) 

 
Prefrontal cortex, caudate-

putamen and CA3 

(compared to vehicle 

controls) 

Protein 

immunohistochemistry CREB 
    

Acute 
15 mg/kg THC 

(30 min) 

Caudate-putamen, hippocampus 

and cerebellum 
 

pCREB protein bound to 

DNA 

ELISA 

Acute 
5 or 10 mg/kg 

THC (90 min) 
Cerebellum 

 

pCREB protein 

immunohistochemistry 

Acute 

1 μg, 5 μg or 

10 μg THC 

microinjection 

(immediately 

after elevated 

plus maze) 

Prefrontal cortex (10 μg) and 

ventral hippocampus (5 μg) 

Basolateral amygdala 

(1 μg) 
(pCREB) immunoblot 
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Repeated 

15 mg/kg THC 

b.i.d. for 

6.5 days 

(30 min) 

Prefrontal cortex 

 

pCREB protein bound to 

DNA 

ELISA 

Repeated 

10 mg/kg THC 

q.d. for 4 weeks 

(24 h or 

3 weeks) 
 

Cerebellum 
pCREB protein 

immunohistochemistry 

Repeated 

10 mg/kg THC 

4.5 days 

(30 min) 

Hippocampus 

 

pCREB bound to DNA 

Repeated 10 mg/kg THC 

7 days (24 h)  
Hippocampus pCREB and total CREB 

protein immunoblot 
c-Fos 

    

Acute 
5 mg/kg THC 

(20 min) 

Cingulate cortex, fronto-parietal 

and caudate-putamen 
 

mRNA 

immunohistochemistry 

Acute 
10 mg/kg THC 

(2 h) 

Caudate-putamen and nucleus 

accumbens 
 

Protein 

immunohistochemistry 

Acute 25 mg/kg THC 

(1 h) 

Lateral septum, paraventricular 

nucleus, caudate-putamen, 

nucleus accumbens and 

mediodorsal thalamus 

Prefrontal cortex and 

cerebellum 

mRNA 

immunohistochemistry 

Acute 
5 mg/kg THC 

(1 h) 

Prefrontal cortex, nucleus 

accumbens, caudate-putamen and 

hippocampus  

mRNA 

RT-PCR 

Repeated 

15 mg/kg THC 

b.i.d. for 

6.5 days 

(30 min) 

Prefrontal cortex and cerebellum 

 

c-Fos protein bound to 

DNA 

ELISA 

FosB 
    

Acute 

10 mg/kg and 

15 mg/kg THC 

(1 h) 

Nucleus accumbens 

 

FosB, Fra-1 and Fra-2 

protein immunoblot 

Acute 
15 mg/kg THC 

(1 h) 
Caudate-putamen 

 

FosB protein immunoblot 

Acute 
15 mg/kg THC 

(1 h) 
Cingulate cortex 

 

FosB, Fra-1 and Fra-2 

protein immunoblot 

Repeated 
15 mg/kg THC 

b.i.d. for 

6.5 days 

Prefrontal cortex and 

hippocampus 
 

FosB protein bound to 

DNA 

ELISA 
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(30 min) 

ΔFosB 
    

Repeated 

10–150 mg/kg 

q.d. for 

14.5 days 

(24 h) 

Nucleus accumbens core 

 

Protein 

immunohistochemistry 

Repeated 

10 mg/kg q.d. 

for 13.5 days 

(24 h) 

Prefrontal cortex, caudate-

putamen, nucleus accumbens and 

cerebellum  

Protein immunoblot 

 

 

 

Figure 0.7. Representative figure of the FosB/ΔFosB mRNA transcript.  ΔFosB is an isoform of 

FosB and the splicing out of region IVb reduces protesomal degradation of ΔFosB.  Adapted 

from (Alibhai et al., 2007). 

0.9 Transcriptional regulation by ΔFosB 

ΔFosB is a member of the Fos family of transcription factors and is a truncated form of 

FosB (Figure 0.7).   Early research into ΔFosB transcriptional regulation determined that it 
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repressed AP-1 activation when transiently transfected with various Fos and Jun family members 

(Nakabeppu and Nathans, 1991); however, another study determined that ΔFosB could 

activate transcription of an AP-1 reporter in a stably transfected cell line (Dobrazanski et al., 

1991).  In order to understand the overall pattern of ΔFosB-regulated gene expression in vivo, 

microarray studies were performed (McClung and Nestler, 2003).  Gene expression changes in 

the nucleus accumbens were characterized following ΔFosB induction following repeated 

cocaine administration.  These changes were compared to changes produced by overexpression 

of ΔFosB using bitransgenic mice and overexpression of ΔcJun, a dominant negative inhibitor of 

ΔFosB transcriptional regulation, in bitransgenic mice.  These studies determined that initial 

overexpression/induction of ΔFosB produced similar effects as ΔcJun, meaning ΔFosB acted 

primarily as an AP-1 repressor. However, long-term overexpression/induction of ΔFosB had 

mostly opposing effects compared to ΔcJun, meaning ΔFosB acted as an AP-1 activator. At the 

behavioral level, differences also exist following short-term and long-term ΔFosB induction.  

Short term-ΔFosB induction and ΔcJun both reduce preference for cocaine, while long-term 

induction of ΔFosB increases preference for cocaine (McClung and Nestler, 2003).  
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Figure 0.8 ΔFosB, due to its stability, accumulates following repeated drug administration.  

Adapted from (Nestler et al., 2001). 

  

0.10 Genes targeted by ΔFosB 

Unlike FosB, ΔFosB is minimally induced with acute drug administration but 

accumulates in cells due to its stability (Figure 0.8).  ΔFosB regulates the N-methyl-D-aspartate 

(GluR2), as has been shown in the cerebral cortex following electroconvulsive seizures (Hiroi et 

al., 1998).  The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) 

glutamate receptor subunit 2 is also a ΔFosB target gene (Kelz et al., 1999).  Overexpression of 

ΔFosB in bitransgenic mice increases GluR2 expression by over 50% in the nucleus accumbens, 

but no effect is seen on any other AMPA receptor subunit (Kelz et al., 1999). GluR2 is also up-

regulated by cocaine, an effect ablated by overexpression of ΔcJun (Peakman et al., 2003) while 

ΔFosB binds the AP-1 consensus sequence at the GluR2 promoter region.  Cyclin-dependent 

kinase 5 (CDK5) and its activating cofactor, p35, were identified as a ΔFosB target gene in the 

hippocampus and striatum by use of DNA microarrays (Bibb et al., 2001a; Chen et al., 2000b). 

CDK5 mRNA, protein, and activity are up-regulated in response to ΔFosB overexpression or 
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chronic cocaine treatment (Bibb et al., 2001a; Chen et al., 2000a) and this effect is blocked by 

overexpression of ΔcJun (Peakman et al., 2003).  In addition, chromatin immunoprecipitation 

assays demonstrated that ΔFosB is selectively associated with the CDK5 promoter following 

chronic, but not acute, cocaine administration (Kumar et al., 2005).  CDK5 is involved in the 

regulation of cocaine-induced changes in dendritic spine density (Norrholm et al., 2003).  CDK5 

also increases the phosphorylation of DARPP-32 at threonine 75, which inhibits PKA activity 

(Bibb et al., 1999). Dynorphin appears to be another target for ΔFosB (Andersson et al., 2003), 

and is an example of a gene repressed by the transcription factor (Zachariou et al., 2006a).  

Finally, ΔFosB can recruit histone deacetylases (HDAC) to gene promoters, perhaps regulating 

gene expression through epigenetic mechanisms (Renthal et al., 2008).  ΔFosB is known to 

repress cFos expression following repeated amphetamine administration through recruitment of 

HDAC1, which deacetylates histones at the promoter site, causes DNA to condense, and 

represses transcription.   
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Rationale and Hypothesis 

CB1Rs belong to the superfamily of GPCRs and are one of the most abundantly 

expressed GPCRs in the mammalian central nervous system.  These receptors mediate the 

psychoactive and therapeutic effects of THC, the main psychoactive constituent of marijuana.  

Repeated administration of THC is known to produce brain region-dependent differences in 

CB1R desensitization and downregulation and induction of transcription factors, suggesting a 

role for transcription factors in modulating these CB1R adaptations.  One transcription factor, 

ΔFosB, is induced primarily in striatal regions following repeated THC administration, and these 

regions are also known to be more resistant to CB1R adaptations.  As an overall hypothesis for 

this thesis, studies were performed to determine if THC-mediated induction of ΔFosB is 

regulated through interactions between cannabinoid and dopamine systems and that brain region-

dependent differences in ΔFosB transcriptional regulation could explain some aspects of long-

term CB1R signaling and CB1R adaptations. 

In Chapter 1, studies were performed to determine the brain regional relationship 

between the THC-mediated induction of ΔFosB and CB1R desensitization and downregulation.  I 

hypothesize that regions with induction of ΔFosB will have less CB1R desensitization than 

regions where ΔFosB is not induced.  Further, I predict that CB1Rs are expressed in those cells 

where ΔFosB is induced, and that THC-mediated induction of ΔFosB is CB1R-dependent.  If 

ΔFosB regulates CB1R signaling, then it would require that ΔFosB and CB1Rs are co-expressed.  

Chapter 2 addresses the overall hypothesis by determining if ΔFosB can modulate CB1R 

desensitization.   To test this, bitransgenic mice with overexpression of ΔFosB or ΔcJun (a 

dominant negative inhibitor of ΔFosB transcription) in specific neuronal populations will be used 

to determine the effect of overexpression of these transcription factors on CB1R desensitization.  
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This approach allowed direct testing of whether expression of ΔFosB would affect CB1R 

adaptation in distinct brain regions. ΔFosB is overexpressed in the D1R/dynorphin MSN 

population of the caudate-putamen and nucleus accumbens, as well as in the hippocampus and 

parietal cortex. ΔcJun is overexpressed in both the D1R/dynorphin and D2R/enkephalin MSN 

population, as well as in the hippocampus and parietal cortex.  The specific overexpression of 

ΔFosB in the D1R/dynorphin MSN population is functionally relevant since several drugs of 

abuse specifically induce ΔFosB in this neuronal population.  THC-medited in vivo effects were 

also tested in these mice to determine if any ∆FosB-mediated changes in CB1R desensitization 

were associated with altered tolerance following repeated THC administration.  To address this 

possibility, tolerance to THC-mediated antinociception, hypothermia, locomotor suppression and 

catalepsy was assessed.  It is hypothesized that ΔFosB overexpression will reduce CB1R 

desensitization in the caudate-putamen, substantia nigra and nucleus accumbens, but have no 

effect in the hippocampus. Overexpression of ΔcJun is predicted to enhance desensitization in 

the caudate-putamen, nucleus accumbens, globus pallidus and substantia nigra by blocking 

∆FosB-mediated transcription, but have no effect in the hippocampus.  Further, less tolerance is 

expected to develop to the locomotor suppressing effects of THC in mice overexpressing ΔFosB 

while enhancing tolerance is expected in the ΔcJun overexpressing mice, because these brain 

contribute to THC-mediated locomotor suppression. 

 CB1Rs are found primarily on axon terminals, suggesting that THC-mediated ΔFosB 

induction could be mediated indirectly by trans-synaptic events involving other receptors as 

opposed to directly by CB1Rs in a cell autonomous manner.  It is hypothesized that CB1R-

mediated ΔFosB induction can be indirectly mediated by CB1R-mediated release of dopamine 

and the activation of D1Rs.   Other studies with drugs of abuse that produce dopamine release in 
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striatal regions have found that antagonism of D1Rs can abolish the induction of ΔFosB in these 

regions.  In chapter 3, this question was addressed pharmacologically by administering D1R 

antagonists (SCH23390 and SCH39166) to determine if antagonism of D1Rs blocks THC-

mediated induction of ΔFosB.  If THC-mediated induction of ΔFosB is dependent on D1Rs, it is 

hypothesized that ΔFosB will be specifically induced in D1R/dynorphin MSNs.  To address this 

possibility, dual staining studies were conducted using antibodies directed against dynorphin and 

FosB/ΔFosB.  This question is important since cocaine and natural rewards are known to 

increase ΔFosB expression specifically in this neuronal population.  Activation of D1Rs is known 

to alter the activity of DARPP-32 via phosphorylation at threonine-34 and genetic deletion of 

both DARPP-32 and mutation of the threonine-34 site attenuates cocaine-mediated induction of 

ΔFosB in striatal regions.  Therefore, it is hypothesized that genetic deletion of DARPP-32 will 

attenuate THC-mediated induction of ΔFosB.  If striatal ΔFosB induction is attenuated in 

DARPP-32 knockout mice, it is hypothesized that greater tolerance will develop to THC-

mediated locomotor suppression, as predicted after inhibition of ΔFosB.   

 Finally, if ΔFosB regulates CB1R desensitization, it is likely occurring through regulation 

of transcription and changes in the expression of known targets.  It is hypothesized that 

expression of CDK5 and p35, two known transcriptional targets of ΔFosB, will be increased in 

regions where ΔFosB is induced following repeated THC administration.  I also predict that 

repeated THC administration will increase the phosphorylation state of DARPP-32 at threonine 

75 since CDK5, when dimerized with p35, phosphorylates DARPP-32 at this site.  

Understanding the signaling mechanisms that underlie CB1R adaptation will provide insights 

into the development of possible therapeutic targets that can then selectively enhance or reduce 

CB1R adaptation. 
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Figure 0.9 Hypothesized mechanism of THC-mediated ΔFosB induction in striatum.  THC 

promotes release of dopamine through inhibition of GABA release from GABAergic MSN 

terminals.  Dopamine activates D1Rs on D1R/dynorphin MSNs, which activates AC, increases 

cAMP and subsequently activates PKA.  PKA then phosphorylates DARPP-32 at threonine 34, 

which indirectly increases phosphorylation of ERK through increased phosphorylation of 

striatal-enriched protein tyrosine phosphatase (STEP, not shown), which inactivates ERK.  PKA 

and ERK (through ETS domain-containing protein 1, ELK-1) phosphorylate CREB, which 

regulates expression of ΔFosB when dimerized with serum response factor (SRF).  ΔFosB can 

increase CDK5 and p35/p25 expression, which would feed back on the DARPP-32 pathway, 

providing one mechanism through which ΔFosB could regulate CB1R desensitization.  CB1Rs 

could also increase ERK phosphorylation through the recruitment of βarrestin. 
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Chapter 1: ΔFosB induction correlates inversely with CB1 receptor desensitization in a 

brain region- dependent manner following repeated Δ
9
-THC administration 

1.1 Introduction 

Marijuana is the most widely used illicit drug in the United States and its repeated use 

leads to the development of both tolerance and withdrawal symptoms, which are included in the 

DSM-IV criteria for cannabis use disorder (American Psychiatric Association, 2000; SAMHSA, 

2010).  THC is the main psychoactive constituent of marijuana and produces its behavioral 

effects via CB1Rs, which are G-protein-coupled receptors that are widely distributed in the brain 

(Howlett et al., 2002).  Cannabinoid-mediated effects in rodents include antinociception, 

hypothermia, catalepsy, hypolocomotion and memory impairment (Howlett et al., 2002; Varvel 

and Lichtman, 2002).  Repeated THC administration produces tolerance to these effects and 

withdrawal occurs upon cessation of treatment or antagonist administration (Lichtman and 

Martin, 2005).  Studies have revealed alterations in CB1R signaling following repeated 

cannabinoid treatment, but the relationship between these molecular adaptations and tolerance 

and dependence are not well understood.  Repeated THC administration decreases both CB1R 

levels (downregulation) and CB1R-mediated G-protein and effector activity (desensitization) in 

rodent brain (Sim-Selley, 2003). Several studies have demonstrated that there are differences 

among brain regions in the magnitude and temporal properties of CB1R desensitization and 

downregulation. Specifically, CB1R desensitization and downregulation occur at lower agonist 

doses and develop more rapidly in the hippocampus than in the striatum (caudate-putamen and 

nucleus accumbens) (Breivogel et al., 1999; McKinney et al., 2008). These findings appear to 

translate to human cannabis users.  CB1R levels were lower in the brains of marijuana users 

compared to non-users, and the magnitude of apparent downregulation exhibited a similar 
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regional pattern as seen in rodents (Villares, 2007).  Region-specific reductions in CB1R binding 

have also been reported using in vivo imaging in subjects that were marijuana users (Hirvonen et 

al., 2012).  The recovery of CB1R levels and activity after cessation of cannabinoid treatment 

was slower in the hippocampus than striatum in rodents (Sim-Selley et al., 2006).  Similarly, 

reduced CB1R binding in human brain persisted in the hippocampus after ~4 weeks of abstinence 

from marijuana, whereas binding in other regions appeared similar to pre-drug levels at this time 

point (Hirvonen et al., 2012).  These observations are important because the hippocampus is 

associated with cognitive and memory impairing effects of cannabinoids, whereas the striatum 

mediates motivational and motor effects of these drugs(Breivogel and Sim-Selley, 2009).  In 

fact, studies in human marijuana users suggest that greater tolerance develops to memory 

impairment compared to motor or subjective measures such as “high” (D'Souza et al., 2008; 

Haney et al., 2004; Ramaekers et al., 2009) 

 The mechanisms underlying regional differences in CB1R adaptations are not known, but 

differences in the expression of signaling and regulatory proteins among brain regions, and 

changes in their expression following repeated THC administration, could contribute to these 

findings.  ΔFosB, a truncated splice variant of the transcription factor FosB, is modestly induced 

following a single drug injection, but accumulates upon repeated drug administration and is 

stable for weeks after cessation of treatment (Chen et al., 1997). Treatment with several drugs of 

abuse, including opiates and cocaine, induces ∆FosB in the striatum (Nestler et al., 2001). We 

showed that THC significantly increased the number of FosB/∆FosB-immunoreactive (-ir) cells 

in the nucleus accumbens core (Perrotti et al., 2008).  Semi-quantitative analysis also showed 

that THC-induced FosB/∆FosB-ir cells in other forebrain regions, but protein levels could not be 

quantified with this technique. 
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Bitransgenic mice that overexpress ΔFosB in dopamine D1R/dynorphin containing 

striatal MSNs exhibit increased rewarding effects of several drugs of abuse and natural rewards 

(Nestler, 2008).  These same mice also had increased G-protein signaling and AC inhibition for 

mu- and kappa-opioid receptors, respectively, in the nucleus accumbens, suggesting that ΔFosB 

modulates signaling at the receptor/effector level (Sim-Selley et al., 2011). The striatum and its 

projection regions appear resistant to CB1R desensitization and downregulation (Sim-Selley, 

2003) and the striatum is involved in the rewarding effects of drugs of abuse (Koob, 1999; Koob 

and Volkow, 2010).  Taken together, these findings suggest that ΔFosB might modulate CB1Rs 

after repeated drug administration, but the regional expression pattern of ΔFosB and CB1R 

desensitization and downregulation has not been directly compared in brains from animals that 

received the same THC administration paradigm.  Therefore, this study investigated the brain 

regional relationship between ΔFosB induction and CB1R desensitization and downregulation 

after repeated THC treatment. Studies were also conducted to determine the neuroanatomical 

relationship between CB1Rs and ∆FosB positive cells in the striatum.  Finally, the role of CB1Rs 

in THC-mediated ∆FosB induction was assessed in CB1R knockout mice.  Results showed an 

inverse regional relationship between CB1R desensitization and ∆FosB induction and 

neuroanatomical results support the possibility of both cell-autonomous and trans-synaptic 

interactions.  

1.2 Materials and Methods  

Materials 

THC and [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-

hydroxypropyl)cyclohexanol] (CP55,940) were provided by the Drug Supply Program of the 

National Institute on Drug Abuse (Rockville, MD).  [
35

S]GTPγS (1250 Ci/mmol) was purchased 
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from PerkinElmer Life Sciences (Boston, MA).   Bovine serum albumin (BSA) and guanosine 

diphosphate (GDP) were purchased from Sigma-Aldrich (St. Louis, MO).  Goat anti-rabbit anti-

FosB antibodies (sc-7203 and sc-48) were purchased from Santa Cruz Biotechnology (Santa 

Cruz, CA).  Goat anti-CB1R and guinea-pig anti-CB1R antibodies (against residues 401-473 of 

the CB1R) (Pickel et al., 2006) were generously provided by Dr. Ken Mackie (Indiana 

University, Bloomington, IN).  Secondary antibodies were purchased from either LI-COR 

(Lincoln, NE) or Invitrogen (Grand Island, NY).  ProLong® Gold anti-fade reagent with 4',6-

diamidino-2-phenylindole (DAPI) was purchased from Invitrogen.   All other reagent grade 

chemicals were obtained from Sigma Chemical Co. or Fisher Scientific. 

Subjects  

Male ICR mice (Harlan Laboratories, Indianapolis, IN) weighing 25-30 grams (n=8 per 

group) were used to assess CB1R adaptations and ∆FosB induction.  THC (10 mg/kg) was 

dissolved in a 1:1:18 solution of ethanol, emulphor and saline (vehicle).  Mice were injected 

subcutaneously with either vehicle or THC at 07:00 and 16:00 h for 13 days.  On day 14, mice 

received a morning injection only, and 24 hours later mice were sacrificed by decapitation and 

brains were extracted.  Brains were then hemisected, with one half dissected for immunoblot 

analysis and the other half frozen in isopentane at -30°C for autoradiography and 

immunohistochemistry to measure [
35

S]GTPγS binding and CB1R levels, respectively.  Based on 

initial results, a second group of ICR mice was treated as described above, and the lateral and 

basomedial nuclei of the amygdala were dissected to determine ΔFosB expression.  

For immunohistochemical studies to determine whether CB1Rs and ΔFosB are co-

localized in striatal neurons, male ICR mice (n=4) were treated with vehicle or a ramping dose of 

THC (10-20-30 mg/kg) twice daily for 6.5 days.  We have previously determined that this 
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treatment paradigm induces a high level of ∆FosB in the striatum (unpublished data). Brains 

were collected 24 hours after final drug administration to maximize the detection of ∆FosB, 

which is more stable than FosB.  

The role of CB1Rs in ∆FosB induction was determined using CB1R knockout mice on a 

C57Bl/6J background and littermate controls (Zimmer et al., 1999) (n = 7-8 per group).  CB1R 

knockout and wild type (WT) mice were treated with THC (10mg/kg) or vehicle for 13.5 days as 

described above, and the caudate-putamen and nucleus accumbens were dissected 24 hours after 

final treatment.  A separate group of C57Bl/6J mice (Jackson Laboratories, Bar Harbor, Maine) 

were treated with increasing doses of THC to determine whether results in CB1R knockout mice 

were due to an inability of this dose of THC (10 mg/kg) to further induce ∆FosB above levels in 

vehicle-treated mice.   Mice received vehicle, 10 mg/kg THC or 30 mg/kg THC for 13.5 days as 

described above and the caudate-putamen was dissected 24 hours after the final injection.  

Mice were housed four to six per cage and maintained on a 12-hr light/dark cycle in a 

temperature controlled environment (20-22°C) with food and water available ad libitum. All 

experiments were performed with the approval of the Institutional Animal Care and Use 

Committee at Virginia Commonwealth University in accordance with the National Institutes of 

Health guide for the care and use of Laboratory animals 7
th

 edition. 

 

Dissections  

Brain regions of interest were dissected from hemisected or whole fresh brains.  The 

prefrontal cortex was dissected by making a cut at the posterior extent of the anterior olfactory 

nucleus after which the olfactory nuclei were removed.  This sample included frontal association, 

primary and secondary motor, anterior cingulate, prelimbic and orbital frontal cortices.  The next 
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cut was made anterior to the optic chiasm to produce a thick coronal section.  The nucleus 

accumbens was dissected by removing the cortex ventrally and the septum and nucleus of the 

horizontal limb of the diagonal band medially and then collecting the tissue surrounding the 

anterior commissure.  The caudate-putamen was dissected by removing the cortex and then 

collecting the caudate-putamen that remained after removal of the nucleus accumbens.  The 

hippocampus was exposed by removing the cortex from the remaining brain, then dissecting the 

whole hippocampus from the surface of the brain.  In a separate experiment, the lateral amygdala 

(including the ventrolateral, dorsolateral, and anterior and posterior basolateral nuclei) and 

basomedial amygdala were dissected.  These dissections were made by first cutting caudal to the 

optic chiasm, and then making a second cut directly caudal to the median eminence.  The 

basomedial amygdala was isolated by removing the surrounding ventral amygdaloid regions and 

separating dorsally at the ventral extent of the bifurcated corpus callosum.  The lateral amygdala 

was isolated by removing the tissue found within the bifurcated corpus callosum.   

Agonist stimulated [
35

S]GTPγS autoradiography 

Assays were conducted as previously published from our laboratory (Nguyen et al., 2010; 

Sim et al., 1995).  Briefly, coronal sections (20 µm) were cut on a cryostat maintained at -20°C, 

thaw-mounted onto gelatin-coated slides and stored desiccated at 4°C overnight.  Sections were 

collected at 3 levels to include 1) prefrontal cortex, 2) nucleus accumbens and caudate-putamen, 

and 3) hippocampus, lateral amygdala and basomedial amygdala.  Slides were stored desiccated 

at -80°C until use.  For assays, slides were brought to room temperature, and then rinsed in 50 

mM Tris-HCl buffer (pH 7.4) with 3 mM MgCl2, 0.2 mM ethylene glycol tetraacetic acid 

(EGTA) and 100 mM NaCl (Assay Buffer) for 10 min at 25°C.  Next, slides were transferred to 

Assay Buffer + 0.5% BSA, with 2 mM GDP and 10 mU/ml adenosine deaminase for 15 min at 
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25°C. Slides were then incubated in Assay Buffer + 0.5% BSA containing 0.04 nM [
35

S]GTPγS 

with 3 µM CP55,940 or vehicle (basal) for 2 hours at 25°C.  CP55,940 was used because we 

have previously shown that it does not stimulate [
35

S]GTPγS binding in autoradiography of 

CB1R knockout mouse brains (Nguyen et al., 2010). The maximally effective concentration of 

CP55,940 was previously determined in cerebellar sections and homogenates (Nguyen et al., 

2010).  After final incubation, slides were rinsed twice in 50 mM Tris buffer (pH 7.4) at 4°C, and 

then in deionized water. Slides were then dried and exposed to Kodak Biomax MR film with 

[
14

C] microscales for 18 hrs. Films were digitized at 8-bits per pixel with a Sony XC-77 video 

camera.  Brain regions of interest (ROIs) were determined using The Mouse Brain Atlas 

(Franklin and Paxinos, 2008).  Images were analyzed using NIH Image J software as described 

previously and resulting values are expressed as nanocuries of [
35

S] per gram of tissue (nCi/g).  

Net agonist-stimulated [
35

S]GTPγS binding was calculated by subtracting basal (without agonist) 

binding from agonist-stimulated binding.  Values were obtained in quadruplicate sections 

collected from eight hemisected brains per group and averaged for statistical analysis.   

Immunohistochemistry  

CB1R immunofluorescence was used to assess receptor levels in hemisected brains.  

Slide-mounted sections were washed in 0.1 M phosphate buffer (pH 7.4) with 0.9% NaCl (PBS) 

for 5 minutes and fixed with 4% paraformaldehyde dissolved in 0.05 M phosphate buffer (pH 

7.4), 0.9% NaCl, 1% Triton-X100 (PBST) for 30 minutes.  Slides were rinsed 3 X 5 minutes in 

0.1 M Tris buffer (pH 7.4), with 0.9% NaCl and 0.1% Triton-X100 (TBST), and then blocked in 

TBST containing 5% normal donkey serum.  Slides were incubated overnight at 4°C in TBST 

containing 2.5% normal donkey serum and goat-anti CB1R (1:2000).  Slides were then washed 3 

X 10 minutes in TBS containing 0.05% Tween-20 and incubated in Alexa 800 donkey anti-goat 
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IgG (1:5000) for 2 hours.  After incubation, slides were washed 2 X 10 minutes in TBS 

containing 0.05% Tween-20 and 1 X 5 minutes in TBS. Fluorescent immunoreactivity  was 

detected with the LI-COR Odyssey scanner (42 μm resolution, 1 mm offset with highest quality, 

channel sensitivity set at 4.0) and LI-COR software v 2.1 was used to measure the average 

intensity of ROIs (Franklin and Paxinos, 2008) with the free form shape tool.  Average intensity 

values were used to account for differences in the size of ROIs between slices because this is not 

corrected using integrated intensity.  

CB1R and ΔFosB/FosB dual staining was assessed in coronal sections of the striatum to 

determine the anatomical relationship between these two proteins.  Slide-mounted sections (20 

µm) were washed in 0.1 M phosphate buffer (pH 7.4) with 0.9% NaCl (PBS) for 5 minutes and 

fixed with 4% paraformaldehyde (30 minutes) dissolved in 0.05 M PBS.  Slides were washed 3 

X 5 minutes in PBS and incubated in PBS containing 1% Triton-X100 for 15 minutes.  Slides 

were then washed 3 X 5 minutes in PBS and incubated in PBS containing 5% normal goat serum 

for 1 hour.   Slides were incubated overnight at 4°C in PBS containing 2.5% normal donkey 

serum and antibodies against CB1R (1:1000; guinea-pig) and FosB (1:500; sc-48/rabbit).  Slides 

were then washed 3 X 5 minutes in PBS containing Alexa Fluor® 488 goat anti-guinea pig IgG 

(1:500) and Alexa Fluor® 594 goat anti-rabbit IgG for 2 hours.  After incubation, slides were 

washed 3 X 10 minutes in PBS and once for 5 minutes in double-distilled water.  Slides were 

coverslipped using ProLong® Gold anti-fade reagent with DAPI. Images were captured on a 

Zeiss 700 laser scanning confocal microscope utilizing the ZEN 2011 software. Pinhole diameter 

was set to 1 Airy unit for the 488 wavelength to which the optical slice thicknesses were matched 

for the 405 and 594 detectors. Scan resolution was optimized to meet Nyquist sampling criteria 

in the X and Y dimensions. Signal crosstalk was eliminated by separating each wavelength into 
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individual tracks and scanning sequentially. Scanning line-by-line, averaging four passes in a 

single direction, then yielded an image at a 16 bit depth. All images were taken under a Zeiss 

Plan-Apochromat 40x/1.3 Oil objective. 

 Immunoblots 

Immunoblotting was performed as previously described (Sim-Selley et al., 2006; 

Zachariou et al., 2003).  Tissue was homogenized in 20 mM HEPES buffer (pH 7.8) with 0.4 M 

NaCl, 20.0% glycerol, 5.0 mM MgCl2, 0.5 mM ethylenediaminetetraacetic acid, 0.1 mM EGTA 

and 1% NP-40 (EMSA buffer) containing 0.5 mM phenylmethanesulfonylfluoride, 10 µg/ml 

leupepsin, 100 µg/ml benazamide, 2 µg/ml
 
aprotinin, 500 µM dithiothreitol and Halt™ protease 

inhibitor cocktail.  Samples (50 µg protein) were loaded in 10% Tris-HCl gels and separated by 

electrophoresis.  Gels were transferred onto nitrocellulose paper, blocked in 0.1 M TBS with 5% 

Carnation™ instant nonfat dry milk for 1 hour, incubated in antibodies against α-tubulin 

(1:1000) and FosB (1:500) in 0.1 M TBS containing 0.1% Tween-20 (TBST) with 5% nonfat dry 

milk.  Blots were washed 3 X 10 minutes in TBST and incubated with Alexa 680 goat anti-rabbit 

IgG (1:12000) and Alexa 800 goat anti-mouse IgG (1:12000) in TBST for 45 minutes.  

Fluorescent intensity was visualized using the Odyssey LI-COR infrared scanner.  LI-COR 

software v 2.1 was used to measure integrated intensity between treatments for the band of 

interest, with subtraction of the background (average of intensities 3 border widths above and 

below the band).  In order to verify that bands for the α-tubulin loading control were not 

saturated and ensure the accuracy of results, an experiment was conducted in which varying 

concentrations of protein (25-100 µg) were loaded onto the gel and intensity was measured using 

the LI-COR system.  Linear regression analysis showed that these data fitted at r
2 
= 0.9978, 

thereby confirming that the signal was not saturated at 50 µg, the amount of protein used in these 
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studies. 

Data Analysis 

For all experiments, data were analyzed with Prism® version X (GraphPad Software, San 

Diego, CA).  For desensitization and downregulation studies and immunoblots comparing only 

vehicle and 10 mg/kg THC, student t-tests were used to compare means of repeated THC and 

vehicle groups based on planned comparisons by region.  For studies in CB1R knockout and wild 

type mice, data were analyzed by two-way ANOVA and Bonferroni post-hoc test and one-way 

ANOVA with Dunnett’s post-hoc test in instances where an interaction was found.  For all other 

studies, one-way ANOVAs were performed with Bonferroni post-hoc test.  To determine whether 

∆FosB induction correlated with CB1R desensitization, linear regression analysis was performed 

and the significance of correlations was determined with F-tests to determine whether the slope 

of the line was significantly non-zero.  Significance was determined with p < 0.05. 

 

1.3 Results 

Repeated THC administration reduces CP55,940-stimulated [
35

S]GTPγS binding in a region-

specific manner 

CP55,940-stimulated [
35

S]GTPγS binding was conducted to determine whether 13.5 day 

treatment with 10 mg/kg THC (b.i.d.) produced CB1R desensitization in the forebrain.  No 

differences in basal [
35

S]GTPγS binding were found between THC- and vehicle-treated mice in 

any region examined (data not shown).  Densitometric analysis revealed a region-dependent 

reduction in CP55,940-stimulated [
35

S]GTPγS binding in brains from THC- compared to 

vehicle-treated mice.  THC treatment produced a significant reduction in CP55,940-stimulated 

[
35

S]GTPγS binding in the prefrontal cortex (29%  decrease, df=14, p < 0.05) and hippocampus 
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(50% decrease, df=14, p < 0.01) compared to vehicle-treated mice (Figure 1.1, Table 1.1). THC 

treatment significantly reduced CP55,940-stimulated [
35

S]GTPγS binding by 27% (df=14, p < 

0.05) in both the lateral amygdala (including the lateral and basolateral nuclei) and basomedial 

amygdala of THC-compared to vehicle-treated mice.  In contrast, there was no significant 

difference in CP55,940-stimulated [
35

S]GTPγS binding in the caudate-putamen or nucleus 

accumbens of THC- versus vehicle-treated mice (Figure 1.1, Table 1.1).  Therefore, the regional 

profile of relative CB1R desensitization was hippocampus >> prefrontal cortex ≥ basomedial 

amygdala = lateral amygdala > > caudate-putamen = nucleus accumbens. 
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Figure 1.1 (A) Representative autoradiograms showing CP55,940-stimulated [
35

S]GTPγS 

binding in brains from vehicle and THC-treated mice.  Prefrontal cortex is shown in row 1, 

nucleus accumbens and caudate-putamen in row 2 and hippocampus, lateral amygdala and 

basomedial amygdala in row 3. (B) Graph representing differences in net-stimulated [
35

S]GTPγS 

binding expressed as a percent of net-stimulated binding in vehicle-treated mice.  Data are means 

± SEM with * p < 0.05 and ** p < 0.01 versus vehicle controls, un-paired, two-tailed Student t-

test, n = 8 mice per group. 
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CB1R-ir is reduced by repeated THC treatment in a subset of brain regions 

CB1R-ir was measured using immunohistochemistry in brain sections that were near-

adjacent to those used for [
35

S]GTPγS autoradiography. CB1R-ir in brain sections was analyzed 

using the Odyssey LI-COR system, which can scan images with a resolution up to 24 µm, 

allowing accurate measurements of differences in fluorescent intensity (Brunet et al., 2009; 

Kearn, 2004).  CB1R-ir was measured in the same regions as described above for agonist-

stimulated [
35

S]GTPγS binding.  Decreased CB1R-ir, indicative of downregulation, was found in 

many of the same regions as CB1R desensitization, although the magnitude of the decrease was 

generally greater for desensitization.  CB1R-ir was significantly reduced in the prefrontal cortex 

(19% decrease, df=14, p < 0.01), lateral amygdala (15% decrease, p < 0.05) and hippocampus 

(22% decrease, df=14, p < 0.05) of THC- compared to vehicle-treated mice (Figure 1.2, Table 

1.1).  CB1R-ir did not significantly differ between THC- and vehicle-treated mice in the nucleus 

accumbens, caudate-putamen or basomedial amygdala.  These results demonstrate a similar 

regional pattern for CB1R desensitization and downregulation. 
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Figure 1.2 (A) Representative images of LI-COR scans for CB1R-ir.  Prefrontal cortex is shown 

in row 1, nucleus accumbens and caudate-putamen in row 2, and hippocampus, lateral amygdala 

and basomedial amygdala in row 3.    (B) Graph showing differences in average intensity for 

CB1R-ir as a percent of vehicle.  Data are means ± SEM with * p < 0.05 versus vehicle controls, 

un-paired, two-tailed Student t-test, n = 8 mice per group.   
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TABLE 1.1 

Net CP55,940-stimulated [
35

S]GTPγS binding and CB1R-ir measured in brain sections from 

vehicle- and THC- treated mice 

 Net 

[
35

S]GTPγS binding 

CB1R-ir 

Average intensity 

Region VEHICLE THC VEHICLE THC 

Prefrontal cortex 541 ± 35 388 ± 42* 1173 ± 66 946 ± 20* 

Nucleus accumbens 286 ± 25 290 ± 32 432 ± 12 417 ± 16 

Caudate-putamen 319 ± 14 316 ± 29 1160 ± 34 1134 ± 33 

Lateral amygdala 397 ± 21 290 ± 36* 461 ± 18 393 ± 2* 

Basomedial amygdala 349 ± 35 253 ± 16* 351 ± 33 365 ± 14 

Hippocampus 380 ± 25 188 ± 32** 498 ± 7 392 ± 12** 

______________________________________________________________________________ 

Brain sections were incubated in 0.04 nM [
35

S]GTPγS, 3 µM CP55,940 and 2 mM GDP for 

autoradiography and results are expressed as net CP55,940-stimulated [
35

S]GTPγS binding 

(nCi/g) ± SEM.  Near-adjacent sections were processed with an antibody to CB1R for 

immunohistochemistry and results are expressed as CB1R-ir average intensity in units of 

counts/pixels ± SEM.  *p < 0.05 **p < 0.01 different from vehicle by Student’s t-test, n=8 mice 

per group. 
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∆FosB is induced by THC treatment in specific forebrain regions 

 Immunoblots were performed to determine the relative expression levels of ΔFosB 

between vehicle- and THC-treated mice. Immunoblot results showed region-specific induction of 

∆FosB expression by THC.  Repeated THC treatment produced significant increases in ∆FosB-ir 

in the prefrontal cortex (43% increase, df=14, p < 0.05), caudate-putamen (62% increase, df=14, 

p < 0.001), nucleus accumbens (87% increase, df=14, p < 0.001) and lateral amygdala (38% 

increase, df=14, p < 0.05) of THC- compared to vehicle-treated mice (Figure 1.3, Table 1.2).  In 

contrast, ∆FosB-ir in the basomedial amygdala and hippocampus did not significantly differ 

between treatment groups.  Therefore, the regional profile of THC-mediated ∆FosB induction 

was nucleus accumbens > caudate-putamen > prefrontal cortex > lateral amygdala >> 

basomedial amygdala = hippocampus. 
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Figure 1.3  Immunoblot results for ΔFosB expression in the prefrontal cortex, nucleus 

accumbens, caudate-putamen, lateral amygdala, basomedial amygdala and hippocampus of mice 

that received repeated vehicle or THC administration.  Blots were probed with antibodies 

directed against ΔFosB and α-tubulin (loading control).  (A) Graph showing densitometric 

analysis of  brain regions from vehicle- and THC-treated mice expressed as percent vehicle 

control.  Data are means ± SEM with * p < 0.05 and *** p < 0.001 versus vehicle controls, un-

paired, two-tailed student t-test, n = 8 per group.  (B) Representative blots showing ∆FosB-ir and 

α-tubulin-ir in vehicle- and THC-treated brains for each region examined.   
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TABLE 1.2 

ΔFosB expression measured by immunoblot in brains from vehicle- and THC-treated mice 

 ΔFosB-ir 

Integrated intensity 

Region 

VEHICLE 

THC 

 

Prefrontal cortex 2.94 ± 0.33 4.20 ± 0.47* 

Nucleus accumbens 1.81 ± 0.22 3.39 ± 0.25*** 

Caudate-putamen 1.56 ± 0.11 2.52 ± 0.12*** 

Lateral amygdala 2.94 ± 0.11 4.05 ± 0.08* 

Basomedial amygdala 1.98 ± 0.11 2.13 ± 0.08 

Hippocampus 1.40 ± 0.23 1.20 ± 0.14 

______________________________________________________________________________ 

∆FosB-ir was measured in homogenates prepared from brain regions of interest using an 

antibody against FosB that recognizes all FosB isoforms, as described in Methods.  The 35-37 

kDa band, defined as ΔFosB, was measured for analysis.  Results are expressed as integrated 

intensity in units of counts-mm
2
 ± SEM.  *p < 0.05 ***p < 0.001 different from vehicle by 

Student’s t-test, n=8 mice per group 
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CB1R desensitization and ∆FosB expression are inversely correlated 

Reductions in CB1R-ir and CB1R-mediated G-protein activity exhibited a similar regional 

pattern, whereas THC-mediated ∆FosB induction was most robust in regions with less CB1R 

desensitization.  In order to determine whether these observations represented significant 

correlations, the mean percent changes in [
35

S]GTPγS binding, CB1R-ir and ∆FosB-ir of vehicle- 

versus THC-treated mice were plotted for each region.  Desensitization ([
35

S]GTPγS 

autoradiography, y-axis) and downregulation (CB1R-ir, y-axis) were each compared to ∆FosB 

expression (immunoblots, x-axis).  For the comparison between ∆FosB-ir and downregulation, 

the slope of the linear regression line was not determined to be significantly non-zero r (4) = 

0.20, p = 0.67.  For the comparison between ∆FosB-ir and desensitization, the slope of the linear 

regression line was determined to be significantly non-zero r (4) = 0.94, (p < 0.01) (Figure 1.4).  

These analyses confirmed initial observations and showed a significant inverse regional 

correlation between CB1R desensitization and ∆FosB expression. 
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Figure 1.4 Correlation of percent change in measured parameters for THC-compared to vehicle-

treated mice for the brain regions examined between desensitization (y-axis) and ΔFosB 

expression (x-axis).  Correlation is presented as percent change from vehicle with corresponding 

r-squared values. Data are means ± SEM with ** p < 0.01, F-test, n=8 per group. 
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CB1Rs co-localize with and contact ∆FosB/FosB-ir neurons 

 Immunohistochemistry was performed in order to determine whether the interaction 

between CB1Rs and ∆FosB occurs within the same cell or is a trans-synaptic effect.  Mice were 

treated with a ramping dose of THC (10-20-30mg/kg) that strongly induces ΔFosB expression in 

the striatum.  The antibody used to assess ∆FosB recognizes FosB/∆FosB, but the 24-hour post-

treatment survival time used in this experiment favors detection of ∆FosB (Perrotti et al., 2004).  

CB1R-ir was visualized in green and FosB/∆FosB-ir was visualized in red (Figure 1.5).  DAPI 

(blue) was used to identify cell nuclei. The distribution of CB1R-ir in the caudate-putamen and 

nucleus accumbens of both vehicle- and THC-treated mice was similar to that previously 

described by (Tsou et al., 1998) (Figure 1.5 A, D). CB1R-ir in both the caudate-putamen and 

nucleus accumbens appeared as bright puncta that were distributed in the neuropil and 

surrounding cell bodies, as indicated by nuclear markers (Figure 1.5 C, F, G-I).  More diffuse 

staining was also observed in the caudate-putamen that appeared to represent fiber bundles.  

Although most of the CB1R-ir appeared to be on fibers, green fluorescent CB1R-ir cell bodies 

were also observed (Figure 1.5 A, C, G and H). FosB/∆FosB-ir nuclei were seen in the caudate-

putamen and nucleus accumbens of both vehicle- and THC-treated mice (Figure 1.5 B, E), but 

fewer FosB/∆FosB-ir nuclei were observed in brain sections from vehicle- compared to THC-

treated mice (not shown).  Dual staining for DAPI showed that FosB/∆FosB-ir was localized in 

cell nuclei (Figure 1.5 C, F, G-I), as previously reported (Perrotti et al., 2008).  DAPI stained 

nuclei that were immunonegative for FosB/∆FosB were also observed in brains from both groups 

of mice (Figure 1.5 C, F, G-I).  Examination of dual staining in brains from THC-treated mice 

revealed that in many cases CB1R-ir puncta appeared to be surrounding cells that contained 

FosB/∆FosB-ir nuclei (Figure 1.5 G-I).  Cells were also observed in the caudate-putamen with 
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green fluorescence that surrounded DAPI/∆FosB positive nuclei (Figure 1.5 G and H).  There 

were no instances where CB1R-ir and FosB/∆FosB-ir were dual stained in the nucleus (Figure 

1.5 C, F, G-I).  Therefore, it appeared that CB1R-ir was both co-localized with FosB/∆FosB-ir in 

cells and also in puncta that contacted cells with FosB/∆FosB-ir nuclei. 
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Figure 1.5 Representative images showing CB1R-ir (green), FosB/∆FosB-ir (red) and DAPI 

(blue) in the caudate-putamen and nucleus accumbens of mice that received repeated THC 

treatment.  CB1R-ir fibers and puncta were seen in the caudate-putamen (A) and nucleus 

accumbens (B) and CB1R-ir cells were occasionally found in the caudate-putamen (A). 

FosB/∆FosB-ir was localized to nuclei of cells in the caudate-putamen (B, C) and nucleus 

accumbens (E, F).  FosB/∆FosB-ir and DAPI were seen in a subset of cell nuclei that were 

surrounded by CB1R-ir puncta in the caudate-putamen (C, G, H) and nucleus accumbens (F, I).  

CB1R-ir was also seen in cells that contained FosB/∆FosB-ir nuclei in the caudate-putamen 

(indicated by arrows in G, H).    ac: anterior commissure 

 

THC-mediated ∆FosB induction is abolished in CB1R knockout mice 
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The role of CB1Rs in THC-mediated ∆FosB induction was determined in the nucleus 

accumbens and caudate-putamen, regions that showed the highest magnitude of ΔFosB 

induction.  CB1R knockout and littermate wild type mice were treated with 10 mg/kg THC or 

vehicle for 13.5 days (b.i.d.) as described above. ΔFosB expression was significantly increased 

in THC- versus vehicle-treated wild-type mice in both the caudate-putamen (39% increase, F1,25, 

p < 0.05) and nucleus accumbens (45% increase, F1,25, p < 0.05) (Figure  6).  There was no 

significant difference in ∆FosB-ir between vehicle- and THC-treated CB1R knockout mice in 

either the caudate-putamen or nucleus accumbens.  In the caudate-putamen, two-way ANOVA 

determined a significant interaction between the factors of genotype × treatment F1, 25 = 4.86, p< 

0.05.  One-way ANOVA, followed by Dunnett’s post-hoc test, determined that both vehicle- and 

THC-treated CB1R-knockout mice exhibited significantly greater ΔFosB expression (F3,25, p < 

0.01) compared to wild type vehicle-treated mice (Figure  6).  Because ∆FosB-ir was elevated in 

the caudate-putamen of vehicle-treated CB1R knockout compared to wild type mice, it is 

possible that further increases in ∆FosB-ir might not be detected in this region after this THC 

treatment paradigm, essentially producing a ceiling effect.  Therefore, C57Bl/6J mice were 

repeatedly administered vehicle, 10 mg/kg and a higher dose (30 mg/kg) of THC twice daily for 

13.5 days.  Results showed that this 30 mg/kg THC administration paradigm produced a 

significantly greater increase in ΔFosB-ir than the 10 mg/kg THC administration paradigm (F2,21, 

p < 0.05, Figure 1.7), indicating that the 10 mg/kg paradigm did not induce maximal ΔFosB 

expression in this brain region.  This result shows that THC-mediated ∆FosB induction is dose-

dependent and that ∆FosB induction does not occur in CB1R knockout mice. 
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Figure 1.6 Immunoblot results for ΔFosB expression in the caudate-putamen and nucleus 

accumbens following repeated vehicle or THC administration in wild type and CB1R knockout 

mice.  Blots were probed with antibodies directed against ΔFosB and α-tubulin (loading control).  

(A and B) Graphs showing densitometric analysis of  brain regions from vehicle- and THC-

treated mice expressed as percent vehicle control.  For CPU, data are means ± SEM with ^ p < 

0.05 and ^^ p < 0.01 versus wild type vehicle controls, Dunnett’s post-hoc test following a one-

way ANOVA, n = 7-8 mice per group.  For NAC, data are means ± SEM with * p < 0.05 versus 

wild type vehicle controls, Bonferroni post-hoc test following a two-way ANOVA, n = 7-8 mice 

per group.  (C and D) Representative blots showing ∆FosB-ir and α-tubulin-ir in vehicle- and 

THC-treated brains of wild type and CB1R knockout mice for each region examined.   
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Figure 1.7 Immunoblots showing ΔFosB-ir in the caudate-putamen of mice that received 

vehicle, 10 mg/kg THC or 30 mg/kg THC administration twice daily for 13.5 days.  ΔFosB 

expression was significantly increased by THC treatment (F2,21 =17.78, p < 0.0001).  ∆FosB 

levels were 50% ± 11% (p < 0.05) and 104% ± 17% (p < 0.001) above levels in vehicle control 

mice following 10 mg/kg and 30 mg/kg THC administration, respectively.  ∆FosB-ir was also 

significantly greater in mice that received 30 mg/kg THC administration compared to mice 

treated with 10 mg/kg THC (p < 0.05).  Results are presented as % vehicle control ± SEM with 

significance determined following one-way ANOVA with Bonferroni post-hoc test, n = 8 mice 

per group.  
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1.4 Discussion 

This study demonstrated an inverse regional correlation between THC-mediated 

induction of ∆FosB and CB1R desensitization in the forebrain.  Repeated THC treatment induced 

∆FosB in the caudate-putamen and nucleus accumbens, regions that did not exhibit THC-

induced CB1R desensitization and downregulation.  In contrast, THC treatment did not induce 

∆FosB in the hippocampus, which exhibited the highest magnitude of CB1R desensitization and 

downregulation.  Areas with intermediate levels of CB1R desensitization and downregulation, 

such as prefrontal cortex, lateral amygdala and basomedial amygdala, demonstrated either no 

change or an intermediate level of ∆FosB induction. Immunohistochemical results showed that 

CB1R-ir puncta surrounded cells with FosB/∆FosB-ir nuclei and also that CB1R and 

FosB/∆FosB were co-localized in some cells.  Previous studies have shown that CB1R are 

expressed primarily in GABAergic MSN of the striatum (Hohmann and Herkenham, 2000).  

Thus, these results support the idea that ∆FosB could regulate CB1Rs and/or that CB1R signaling 

could modulate ∆FosB expression via both direct and trans-synaptic mechanisms.  The role of 

CB1Rs in THC-mediated ∆FosB induction has not previously been assessed.  Studies in CB1R 

knockout and wild type mice revealed that ∆FosB induction was CB1R-dependent in the caudate-

putamen and nucleus accumbens, showing that CB1Rs are required for THC-mediated ∆FosB 

induction.   

Studies in rodents have established that there are brain region-dependent differences in 

the magnitude, rate of development and rate of recovery of CB1R desensitization and 

downregulation (McKinney et al., 2008; Sim-Selley, 2003; Sim-Selley et al., 2006).  Similar 

regional relationships have been found in brains from human marijuana users, where greater 

apparent downregulation and slower recovery of ligand binding were found in the hippocampus 
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compared to other brain regions (Hirvonen et al., 2012; Villares, 2007).  The similar regional 

relationship in CB1R adaptations between rodents and humans suggests that this is a fundamental 

property of adaptation of brain CB1Rs to repeated THC exposure.  The present study has 

extended our previous findings by showing that brain regional specificity also exists for 

induction of the stable transcription factor ∆FosB in rodents. 

We have previously assessed THC-mediated desensitization and downregulation and 

induction of ∆FosB in separate studies using a 15-day ramping-dose THC paradigm (Perrotti et 

al., 2008; Sim-Selley and Martin, 2002).  This treatment paradigm produced significant CB1R 

desensitization and downregulation in almost all regions examined, but the relative magnitude 

varied across regions.  The hippocampus exhibited a higher magnitude of desensitization and the 

caudate-putamen and its projection regions of substantia nigra and globus pallidus exhibited a 

lower magnitude of desensitization (Sim-Selley and Martin, 2002). FosB/∆FosB induction was 

examined in a separate study by treating mice with this THC ramping dose paradigm and 

counting the number of FosB/∆FosB-ir cells (Perrotti et al., 2008).  Results showed significant 

THC-induced increases in FosB/∆FosB-ir cells in the nucleus accumbens core, with trends 

toward increases in the nucleus accumbens shell and caudate-putamen.  Semi-quantitative 

analysis showed greater numbers of FosB/∆FosB-ir neurons throughout the forebrains of THC- 

compared to vehicle-treated mice (Perrotti et al., 2008).  The current study extends those findings 

by using immunoblot analysis, which provides a quantitative measure that distinguishes between 

∆FosB and full length FosB and measures total protein expression.  Results showed significant 

THC-mediated ∆FosB induction in the nucleus accumbens, as well as prefrontal cortex, caudate-

putamen and lateral amygdala.  The finding that THC-mediated ΔFosB induction occurs in these 

forebrain regions could have important implications for understanding the mechanisms that 
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contribute to the motivational effects of THC.  The distribution of THC-induced ∆FosB 

expression in the prefrontal cortex, caudate-putamen, nucleus accumbens and lateral amygdala 

corresponds to previous findings reported after treatment with other drugs of abuse or exposure 

to chronic stress (Perrotti et al., 2004; Perrotti et al., 2008).  Neuroplasticity of these brain 

regions is critical in the transition from acute to compulsive drug use and has been suggested to 

be a neural substrate of addiction (Koob and Volkow, 2010).  ∆FosB-mediated regulation of 

target genes in these regions could therefore affect behaviors that contribute to the motivational 

effects of THC as well as other drugs of abuse.  In fact, overexpression of ΔFosB in 

D1/dynorphin-containing striatal MSN enhanced the rewarding effects of morphine and cocaine 

(Colby et al., 2003; Zachariou et al., 2006a).  Moreover, if ∆FosB or its target genes regulate 

CB1R desensitization and/or downregulation in these regions, these molecular changes could also 

modulate the motivational effects of THC.  For example, if ∆FosB or its targets could inhibit 

CB1R desensitization, then less tolerance might develop to behaviors mediated by the striatum 

versus hippocampus in which ∆FosB is not induced by THC.  In fact, studies in humans suggest 

that tolerance develops to the memory-impairing effects of THC, whereas subjective criterion, 

such as THC-induced “high”, are less susceptible to development of tolerance (D'Souza et al., 

2008; Haney et al., 1997; Haney et al., 2004). 

A significant inverse correlation was found between desensitization and ΔFosB induction, 

whereas ∆FosB induction did not correlate with CB1R downregulation.  One explanation for this 

difference is that this THC paradigm did not produce sufficient downregulation to allow a direct 

comparison with ∆FosB induction.  It is also possible that ΔFosB might directly or indirectly 

regulate genes involved in CB1R desensitization, but not downregulation.  For example, 

desensitization involves phosphorylation of G-protein coupled receptors (GPCRs) by G-protein 
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receptor kinases (GRKs), and subsequent recruitment of β-arrestins to the receptor that can 

produce desensitization by interfering with receptor-G-protein coupling and initiating 

endocytosis (Claing et al., 2002; Jin et al., 1999).  β-arrestin-mediated GPCR endocytosis 

promotes trafficking to endosomes, which leads to either recycling of the receptor to the plasma 

membrane (resensitization) or degradation (downregulation).  Trafficking of CB1Rs to lysosomes 

for degradation is regulated by G protein-coupled receptor associated sorting protein 1 (GASP1) 

(Martini et al., 2007).  Thus, a number of regulatory proteins could contribute to the molecular 

changes shown in the present study.  ΔFosB has not yet been linked to pathways involved in 

GPCR trafficking, but this possibility has not been addressed directly. 

The gene targets of ∆FosB that could regulate desensitization are not fully known, but 

previous studies have identified candidate proteins that regulate CB1R adaptions.  Our laboratory 

showed that genetic deletion of β-arrestin-2 in mice attenuated CB1R desensitization in the 

periaqueductal gray, cerebellum and spinal cord, and enhanced desensitization in the projection 

areas of the caudate-putamen (substantia nigra and globus pallidus) following repeated THC 

administration (Nguyen et al., 2012).  Inhibition of the ERK pathway has also been shown to 

modulate CB1R receptor desensitization and downregulation, suggesting that inhibition of 

proteins in this pathway could reduce desensitization.  Alternative interpretations are also 

suggested by the current findings.  It is possible that CB1R desensitization in regions such as the 

hippocampus inhibits induction of ∆FosB, thus regions in which CB1R desensitization occurs 

would show less ∆FosB induction.  This mechanism could also explain the inverse regional 

relationship identified between CB1R desensitization and ∆FosB induction.  

Although the current results support the idea that CB1R desensitization and ∆FosB 

induction after repeated THC exposure might be related, it also is possible that the two events 
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could be coincident and not linked.  For example, signaling pathways upstream of CB1Rs and 

∆FosB might regulate both processes. Studies using rat sarcoma(Ras)-specific guanine 

nucleotide exchange factor 1 (GRF1) knockout mice, which blunts ERK activation through this 

signaling pathway, showed that the Ras/ERK pathway was necessary for CB1R desensitization 

and downregulation in the striatum (Rubino et al., 2005) and was also involved in cocaine-

mediated ΔFosB induction in the striatal neurons (Fasano et al., 2009).  These findings provide a 

mechanism upstream of ΔFosB induction that could also regulate CB1R desensitization.  

However, if ERK was solely responsible for both events, one would predict a positive correlation 

between desensitization and ΔFosB induction, whereas results showed a negative correlation in 

this study. Thus, it will be important in future studies to determine whether there is indeed a 

direct relationship between ∆FosB induction and CB1R desensitization and identify the signaling 

processes that regulate these events. 

The finding that ΔFosB expression was significantly higher in the caudate-putamen of 

CB1R knockout compared to wild type mice suggests that CB1Rs modulate basal ΔFosB 

expression in this region. A recent study showed that reduction of CB1R expression in striatal 

cells using RNA interference-directed knockdown decreased the levels of D2R mRNA and 

protein, as well as D2R-stimulated G-protein activity (Blume et al., 2013).  Moreover, 

administration of the D2R antagonist, haloperidol, is known to induce ∆FosB expression (Atkins 

et al., 1999).  Taken together, these findings suggest that loss of striatal CB1Rs in knockout mice 

could reduce D2R signaling, which, like haloperidol, would enhance dopamine release.  A 

potential interaction between CB1Rs and dopamine receptors in dopamine-mediated regulation of 

∆FosB could have important implications in understanding the cellular consequences of drugs of 

abuse.  
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THC has previously been reported to induce ∆FosB, a property common to drugs of 

abuse (Perrotti et al., 2008), but we believe that this is the first study to directly assess the 

relationship between THC-mediated ∆FosB induction and THC-mediated desensitization and 

downregulation in CB1Rs.  CB1Rs and ∆FosB were co-localized in a subset of striatal neurons, 

demonstrating that adaptations in these pathways following THC exposure could be cell 

autonomous.  The anatomical proximity of CB1R-ir puncta with cells that express ∆FosB 

indicates that CB1Rs might also trans-synaptically regulate ∆FosB.  Results suggest several 

possible functional interactions between CB1R signaling and ∆FosB in the striatum.  The inverse 

regional relationship between CB1R desensitization and ∆FosB induction suggests that ∆FosB 

induction and subsequent changes in the expression of gene targets might inhibit CB1R 

desensitization.  A non-mutually-exclusive possibility is that CB1R desensitization impairs a 

signaling pathway that normally induces ∆FosB expression, so that CB1R desensitization would 

attenuate ∆FosB induction.  These possibilities will need to be directly assessed in future studies 

to determine the mechanism(s) underlying functional interactions between CB1Rs and ∆FosB 

and potential consequences after repeated THC administration.    

 These results suggest that THC-mediated ∆FosB induction could inhibit CB1R 

desensitization or modulate resensitization, and/or that CB1R desensitization could attenuate 

THC-mediated ∆FosB induction.  Future studies will be required to distinguish among these 

mechanisms.  The demonstration that CB1Rs are both co-localized with ∆FosB and in puncta that 

contact ∆FosB expressing cells indicates that both direct interactions and trans-synaptic effects 

could occur.  These studies also demonstrate the requirement for CB1Rs in THC-mediated ∆FosB 

induction and that induction of ΔFosB is THC dose-dependent.  The finding that THC treatment 

induces ΔFosB in several regions important for functions related to reward highlights the role 
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this transcription factor might play in human marijuana use.   
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Chapter 2: ΔFosB modulation of CB1R desensitization and tolerance to cannabinoid-

mediated effects 

 

2.1 Introduction 

THC, the main psychoactive constituent of marijuana (Gaoni, 1964), produces its 

behavioral effects by activating CB1Rs in the CNS (Rinaldi-Carmona et al., 1994; Zimmer et al., 

1999).  Repeated THC administration produces tolerance to THC-mediated in vivo effects, 

including cognitive impairment, locomotor suppression, catalepsy, hypothermia and 

antinociception (Lichtman and Martin, 2005). Tolerance occurs concomitantly with CB1R 

desensitization (Sim-Selley, 2003), but the mechanism(s) underlying these adaptations are not 

well understood.  CB1R desensitization varies in magnitude by brain region depending on the 

dose and duration of repeated cannabinoid administration and the regional profile of these 

adaptations correspond with the development of tolerance to specific cannabinoid-mediated 

responses (Sim-Selley, 2003).  For example, tolerance to THC-mediated hypothermia develops 

more rapidly and at lower doses than tolerance to locomotor suppression and catalepsy 

(McKinney et al., 2008; Whitlow et al., 2003) consistent with the lower level of desensitization 

observed in structures of the basal ganglia and nucleus accumbens compared to other regions 

(Sim-Selley, 2003).  In human marijuana users, greater tolerance develops to the memory 

impairing effects of THC, which involve hippocampal function, compared to motor impairment 

and subjective “high”, which involve striatal circuits (D'Souza et al., 2008; Haney et al., 1999a, 

b).  Studies in human brain using post-mortem autoradiography or in vivo imaging have revealed 

a greater decrease in CB1R levels in the hippocampus compared to the caudate-putamen of 

marijuana users compared to non-users (Hirvonen et al., 2012; Villares, 2007).  These data agree 

with findings in rodent studies and suggest the potential functional relevance of regional 
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differences in CB1R adaptation, but the regulatory mechanisms that underlie these regional 

differences are not known. 

We have proposed that regional differences in the interaction of CB1Rs with specific 

signaling and regulatory proteins might contribute to region-specific differences in CB1R 

adaptation (Nguyen et al., 2012; Sim-Selley, 2003), and recently suggested that induction of 

transcription factors following repeated THC administration might modulate CB1R 

desensitization (Lazenka et al., 2013).  This idea was based, in part, on the demonstration that an 

inverse regional correlation exists between THC-mediated CB1R desensitization and induction of 

ΔFosB (Chapter 1). ΔFosB belongs to the Fos family of transcription factors that dimerize with 

Jun proteins to produce an AP-1 complex that regulates the transcription of target genes (Chen et 

al., 1997; Herdegen and Leah, 1998).  ΔFosB, a truncated splice variant of FosB, is a stable 

transcription factor that accumulates with repeated drug administration (Nestler et al., 2001).  

Transgenic overexpression of ∆FosB in dopamine type 1 receptor (D1R) positive striatal MSNs 

enhanced the rewarding effects of drugs of abuse and natural rewards (Nestler, 2008; Werme et 

al., 2002).  Expression of ∆cJun, which functionally inhibits ∆FosB, reduced cocaine- (Peakman 

et al., 2003) and morphine- (Zachariou et al., 2006a) induced condition place preference.  

Microarray studies have determined that ΔFosB regulates expression of certain receptors (e.g., 

adenosine A2A receptor) and signaling proteins (G-protein Gαo, protein kinase C and 

calcium/calmodulin-dependent protein kinase II) (McClung and Nestler, 2003).  Inducible 

transgenic overexpression of ∆FosB enhanced mu opioid, but not CB1, receptor-mediated G-

protein activity in the nucleus accumbens (Sim-Selley et al., 2011), supporting the idea that 

∆FosB can regulate GPCR signaling.  However, a possible role for ∆FosB in regulating CB1R 

desensitization has not been investigated.  The current study addressed this question by 
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administering repeated THC to transgenic mice that have inducible overexpress ΔFosB or ∆cJun 

in the forebrain and assessing CB1R-mediated G-protein activity and THC-mediated in vivo 

responses. 

 

2.2 Materials and Methods  

Materials  

Materials are provided in Chapter 1 

Mice and Drug Treatments 

Subjects were male, bitransgenic NSE-tTA x TetOp-∆FosB mice (on an FVB/C57BL/6J 

background) and NSE-tTA ×TetOp-FLAG-Δc-Jun mice (on an FVB background) with brain-

region specific, tetracycline-regulated inducible expression of either ΔFosB or ΔcJun, 

respectively (Chen et al., 1998; Peakman et al., 2003).  ∆FosB or ∆cJun expression is controlled 

by adding doxycycline to the drinking water, which prevents ∆FosB/∆cJun expression.  

Omission of doxycycline from the drinking water allows ∆FosB/∆cJun to be expressed.  In mice 

that overexpress ∆FosB (∆FosB-ON), ΔFosB is expressed in D1R MSNs in the caudate-putamen 

and nucleus accumbens, deep layers of cerebral cortex and hippocampus (Chen et al., 1998).  In 

mice that overexpress ∆cJun (∆cJun-ON), expression occurs in both D1R and dopamine type 2 

receptor (D2R) positive MSNs of the caudate-putamen and nucleus accumbens, parietal cortex 

and hippocampus (Peakman et al., 2003). ΔcJun is a dominant negative functional inhibitor of 

Fos-mediated transcription, thus this model provides a strategy to block the effects of ∆FosB 

expression.  Mice were housed four to six per cage and maintained on a 12-hr light/dark cycle in 

a temperature-controlled environment (20-22°C) with food and water available ad libitum.  Mice 

were maintained on drinking water that contained doxycycline (100 µg/ml) throughout gestation 
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and were either taken off doxycycline for 8 weeks prior to experiments to induce expression of 

ΔFosB or ΔcJun or maintained on doxycycline (control).  After 8 weeks with/without 

doxycycline, mice were treated twice daily (08:00 and 16:00) with vehicle (1:1:18 solution of 

ethanol, emulphor and saline) or a ramping dose of THC (10-30-60 mg/kg, subcutaneous 

injection) for 6 days, with doses increasing every 2 days (McKinney et al., 2008).  On day 7, 

mice received only the morning THC injection, and 24 hours later separate groups of mice were 

either tested for THC-induced in vivo responses or were sacrificed and brains were collected for 

CP55,940-stimulated [
35

S]GTPγS binding.  This THC treatment regimen was employed because 

it produces CB1R desensitization throughout the brain, including in the striatum, therefore should 

reveal whether ∆FosB expression alters CB1R desensitization. All experiments were performed 

with the approval of the Institutional Animal Care and Use Committee at Virginia 

Commonwealth University in accordance with the National Institutes of Health guide for the 

care and use of Laboratory animals 7th edition. 

Agonist-stimulated [
35

S]GTPγS Autoradiography 

Assays were conducted as previously described in Chapter 1.  For this study, sections 

were collected to include 1) prefrontal cortex, 2) nucleus accumbens, 3) caudate-putamen, 4) 

globus pallidus, 5) hippocampus and amygdala (including central, basolateral and basomedial 

nuclei), 6) VTA, 7) substantia nigra and  8) cerebellum.   

In vivo Assessment 

Mice were evaluated 24 hours after the last THC injection to determine whether 

overexpression of ΔFosB or ΔcJun affected THC-induced in vivo responses after either repeated 

vehicle or THC treatment.   ΔFosB-ON and ∆FosB-OFF vehicle-treated mice (n = 8 mice per 

group) were initially evaluated for THC-induced hypothermia, antinociception and catalepsy 
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using a cumulative dosing procedure to determine whether expression of ∆FosB affected THC-

mediated responses.  Dose-response data were also used to determine the appropriate challenge 

dose of THC to administer in subsequent experiments for both ΔFosB and ΔcJun bitransgenic 

mice.  Baseline measures were first assessed in the absence of THC, and then mice received 

intraperitoneal (i.p.) injections of increasing doses (3, 7, 20 and 70 mg/kg) of THC and were 

assessed again after each injection.  Subjects were evaluated for all measures beginning at 30 

minutes after injection of each dose of THC, and the entire dose-response assessment was 

completed in less than 3 hours (Falenski et al., 2010; Schlosburg et al., 2010).  Catalepsy was 

determined in the bar test, antinociception was evaluated in the warm water tail immersion test at 

52.0 °C, and body temperature was measured by inserting a thermocouple probe 2.0 cm into the 

rectum (Falenski et al., 2010; Long et al., 2009).  For locomotor activity, each mouse was placed 

in a clear Plexiglas box (42.7 x 21.0 x 20.4 cm) for a 5 min assessment period and Anymaze 

software (Stoelting, Wood Dale, Illinois) was used to determine the amount of time spent 

immobile (Long et al., 2009).  Mice were tested in separate chambers for baseline and THC trials 

to avoid habituation.  Thigmotaxis was also measured during locomotor activity trials by using 

Anymaze to draw a zone in the center of the activity chamber that subtracted the width of a 

mouse (~4 cm) from each side of the chamber, thereby by creating two separate zones.  The 

outside zone represented time spent exhibiting thigmotaxis and the inside zone represented time 

spent within the center of the chamber (Simon et al., 1994).  Data are presented as: (time spent in 

the outside zone/ time spent in the inside zone) x 100.    To circumvent the possibility that mice 

might acclimate to activity chambers with repeated testing, all remaining experiments tested a 

single dose (i.p.) of 100 mg/kg THC for both ΔFosB and ΔcJun bitransgenic mice (n = 8 mice 

per group) using the testing procedures described above.  Baseline measures were taken, and 
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then mice were injected with THC and tested 20 minutes later for locomotor activity.  Catalepsy, 

antinociception and hypothermia were tested 3 hours after THC injection because initial studies 

determined that maximal effects were produced at this time point (data not shown). Because 

neither control nor ΔFosB-ON mice that received repeated THC injection exhibited catalepsy at 

the 100 mg/kg dose, a separate group of mice was tested at a dose of 200 mg/kg THC.  

Analysis 

Data were analyzed with Prism® version X (GraphPad Software, San Diego, CA) for all 

experiments.  For in vivo studies, repeated measures ANOVA were performed with Bonferroni 

post-hoc test (cumulative dosing) or two-way ANOVA with Bonferroni post-hoc test (single 

injection).  For [
35

S]GTPγS autoradiography, net-stimulated [
35

S]GTPγS binding was determined 

by (CP55,940-stimulated [
35

S]GTPγS binding  – basal [
35

S]GTPγS binding).  Two-way ANOVA 

with Bonferroni post-hoc test was used to determine significant differences.  Desensitization was 

calculated as (net-stimulated [
35

S]GTPγS binding in THC-treated mice / net-stimulated 

[
35

S]GTPγS binding in vehicle-treated mice), and Student’s t-tests were used based on planned 

comparisons by region.  Significance was determined with p < 0.05 and all results are presented 

as mean ± SEM. 

 

2.3 Results 

CB1R desensitization is attenuated in the ventral midbrain and amygdala of mice that 

overexpress ΔFosB  

CP55,940-stimulated [
35

S]GTPγS binding was measured in repeated vehicle- and THC-

treated ∆FosB-ON and ∆FosB-OFF mice to assess CB1R-mediated G-protein activity and 

desensitization.  Basal levels of [
35

S]GTPγS binding did not differ between any group of ΔFosB-
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ON and ∆FosB-OFF mice in any region examined (data not shown).  Net CP55,940-stimulated 

[
35

S]GTPγS binding was first compared in vehicle-treated ΔFosB-ON and ∆FosB-OFF mice to 

determine whether ∆FosB expression altered cannabinoid-mediated G-protein activity in drug-

naïve mice.  [
35

S]GTPγS binding in the amygdala was significantly lower (p < 0.01) in ΔFosB-

ON mice (339 ± 16 nCi/g, when compared to ∆FosB-OFF mice (393 ± 16 nCi/g) (Figure 2.1, 

Table 2.1).  No differences in CP55,940-stimulated [
35

S]GTPγS binding were found between 

vehicle-treated ∆FosB-ON and ∆FosB-OFF mice in any other region examined.  The effect of 

repeated THC administration on CP55,940-stimulated [
35

S]GTPγS binding was then compared 

between ∆FosB-ON and ∆FosB-OFF mice. CP55,940-stimulated [
35

S]GTPγS binding was 

significantly lower in repeated THC- compared to vehicle-treated brains from both ∆FosB-OFF 

and ΔFosB-ON mice in almost all regions examined (Figure 2.1, Table 2.1).  The exception was 

the VTA, where there was no significant difference in CP55,940-stimulated [
35

S]GTPγS binding 

between vehicle- and THC-treated ΔFosB-ON mice (118 ± 15 nCi/g for vehicle- versus 82 ± 5 

nCi/g for THC-treated), but ∆FosB-OFF mice exhibited a significant reduction in CP55,940-

stimulated [
35

S]GTPγS binding after THC treatment (118 ± 14 nCi/g for vehicle versus 76 ± 7 

nCi/g for THC-treated, p < 0.05).    

CB1R desensitization was then calculated as previously reported (Sim-Selley and Martin, 

2002) to compare results between ∆FosB-ON and ∆FosB-OFF mice.   Significant differences in 

CB1R desensitization between ∆FosB-OFF and ΔFosB-ON mice were found in the substantia 

nigra and amygdala.  In the substantia nigra, significantly less desensitization was found in 

ΔFosB-ON mice (78% ± 4% of ΔFosB-ON vehicle-treated mice) compared to ∆FosB-OFF mice 

(56% ± 3% of ∆FosB-OFF vehicle-treated mice) (p < 0.001, Figure 2.5 A).  Similarly, 

significantly less desensitization was found in the amygdala of ΔFosB-ON mice (45% ± 2% of 
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ΔFosB-ON vehicle-treated mice) compared to ∆FosB-OFF mice (35% ± 3% of ΔFosB-OFF 

vehicle-treated mice) (p < 0.05, Figure 2.5 A).  CB1R desensitization following repeated THC 

administration was not significantly different between ΔFosB-ON and ∆FosB-OFF mice in the 

prefrontal cortex, nucleus accumbens, caudate-putamen, globus pallidus, hippocampus or 

cerebellum. 
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Figure 2.1  Net-stimulated [
35

S]GTPγS binding in brain regions of vehicle- and THC-treated 

∆FosB overexpressing (ΔFosB-ON) and control (ΔFosB-OFF) mice expressed as percent of net-

stimulated binding in control vehicle-treated mice. Vehicle-treated ΔFosB-ON mice exhibited 

significantly less net-stimulated [
35

S]GTPγS binding in the amygdala compared to ΔFosB-OFF 

mice (p < 0.01, Bonferroni post-hoc test).  Net-stimulated [
35

S]GTPγS binding was significantly 

decreased in all brain regions of ΔFosB-ON and ΔFosB-OFF mice, with the exception of ventral 

tegmental area of ΔFosB-ON mice. There were no differences in net-stimulated [
35

S]GTPγS 

binding between ΔFosB-ON and ΔFosB-OFF mice following repeated THC-administration.  

Data are normalized to percent vehicle-treated control mice and presented as means ± SEM (n = 

8-10 mice per group) * p < 0.05, ** p < 0.01, *** p < 0.001 as compared to vehicle-treated 

control. # p < 0.05, ## p < 0.01, ### p < 0.001 as compared to vehicle-treated ΔFosB-ON mice 

following two-way ANOVA and Bonferroni post-hoc test.  
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TABLE 2.1 Net CP55,940-stimulated [
35

S]GTPγS binding in brain sections from ΔFosB-

ON and ∆FosB-OFF mice following repeated vehicle or THC treatment. 

 Net CP55,940-stimulated [
35

S]GTPγS binding (nCi/g) ± SEM 

Brain Region 
∆FosB-OFF 

Vehicle 

∆FosB-OFF 

THC 

ΔFosB-ON 

Vehicle 

ΔFosB-ON   

THC 

Prefrontal Cortex 

 
446 ± 21 246 ± 15*** 456 ± 17 229 ± 11

###
 

Nucleus 

Accumbens 

 

403 ± 41 198 ± 37*** 443 ± 33 230 ± 27
###

 

Caudate-

Putamen 

 

205 ± 16 

 

90 ± 13*** 

 

225 ± 10 

 

102 ± 16
###

 

 

Globus Pallidus 

 

613 ± 54 

 

 

437 ± 53* 

 

 

649 ± 49 

 

 

444 ± 48
#
 

 

Hippocampus 

 

273 ± 17 

 

 

65 ± 7*** 

 

 

247 ± 17 

 

 

66 ± 11
###

 

 

 

Amygdala 

 

393 ± 16 138 ± 11*** 339 ± 12** 153 ± 7 
###

 

 

VTA 

 

118 ± 13 76 ± 7* 118 ± 15 82 ± 5 

 

Substantia Nigra 

 

 

608 ± 48 

 

 

339 ± 21*** 

 

 

558 ± 40 

 

 

436 ± 24
#
 

 

 

Cerebellum 

 

293 ± 14 150 ± 19*** 293 ± 36 143 ± 14
###

 

Brain sections were incubated in 0.04 nM [
35

S]GTPγS, 3 µM CP55,940 and 2 mM GDP and 

autoradiograms were analyzed using densitometry.  Results are expressed as net CP55,940-

stimulated [
35

S]GTPγS binding (nCi/g) ± SEM, one-way ANOVA, Bonferroni post-hoc test.  * p 

< 0.05, ** p < 0.01, p < 0.001 vs. ∆FosB-OFF vehicle. # p < 0.05, ### p < 0.001 vs. ΔFosB-ON 

vehicle.  (n = 8-10 per group) 
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Figure 2.2 Representative autoradiograms showing CP55,940-stimulated [
35

S]GTPγS binding in 

ΔFosB-OFF and ∆FosB-ON mice following repeated vehicle or THC (10-30-60 mg/kg, b.i.d., 

6.5 days) treatment in regions of the basal ganglia. 
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CB1R desensitization is enhanced in the caudate-putamen and reduced in the hippocampus and 

ventral midbrain of ΔcJun-ON mice  

Studies were conducted to determine whether the expression of ∆cJun, a dominant 

negative inhibitor of FosB-mediated transcription, would alter CB1R-mediated G-protein activity 

or desensitization.  ΔcJun-ON and ∆cJun-OFF mice received the same repeated THC treatment 

as the ΔFosB overexpressing mice, and CP55,940-stimulated [
35

S]GTPγS binding was assessed 

in the same regions described above.  Basal levels of [
35

S]GTPγS binding did not differ between 

any group of ΔcJun-ON and ∆cJun-OFF mice in any region examined (data not shown).    

Analysis of brains from vehicle-treated mice revealed that CP55,940-stimulated [
35

S]GTPγS 

binding in the amygdala was significantly higher in ∆cJun-ON (282 ± 15) compared to ΔcJun-

OFF (218 ± 16) mice (p < 0.01, Figure 2.3, Table 2.2).  No significant differences were found in 

CP55,940-stimulated [
35

S]GTPγS binding between ∆cJun-ON and ∆cJun-OFF mice in any other 

region examined.  Repeated THC treatment significantly reduced CP55,940-stimulated 

[
35

S]GTPγS binding compared to vehicle-treatment in ∆cJun-ON and ∆cJun-OFF mice in all 

regions examined, except for the caudate-putamen in ∆cJun-OFF mice. CP55,940-stimulated 

[
35

S]GTPγS binding did not differ in the caudate-putamen of repeated THC- compared to 

vehicle-treated ∆cJun-OFF mice (114 ± 16 nCi/g for vehicle- versus 70 ± 17 nCi/g for THC-

treated, Figure 2.3, Table 2.2).  In contrast, a significant decrease was found in CP55,940-

stimulated [
35

S]GTPγS binding in the caudate-putamen of ΔcJun-ON mice following repeated 

THC compared to vehicle treatment (153 ± 16 nCi/g for vehicle- versus  68 ± 16 nCi/g for THC-

treated, p < 0.01, Figure 2.3, Table 2.2).   

CB1R desensitization was then calculated and compared between ΔcJun-ON and ∆cJun-

OFF mice.  Significantly greater desensitization was found in the caudate-putamen of THC-
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treated ΔcJun-ON (39% ± 6% of vehicle-treated ΔcJun-ON mice) compared to ∆cJun-OFF (62% 

± 13% of ΔcJun-OFF vehicle-treated mice) mice (Figure 2.5 B). Significantly less CB1R 

desensitization was found in the hippocampus of THC-treated ΔcJun-ON compared to ∆cJun-

OFF mice (37% ± 6% of ΔcJun-ON vehicle-treated mice vs. 18% ± 4% of ΔcJun-OFF vehicle-

treated mice, p < 0.05, Figure 2.5 B). CB1R desensitization was also less in the VTA of ∆cJun-

ON compared to ∆cJun–OFF mice (36% ± 4% of ΔcJun-ON vehicle-treated mice vs. 24% ± 3% 

of ΔcJun-OFF vehicle-treated mice, p < 0.05, Figure 2.5 B). No significant differences in 

desensitization between THC-treated ∆cJun-ON and ∆cJun-OFF mice were found in any of the  

other regions examined. 
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Figure 2.3  Net-stimulated [
35

S]GTPγS binding in brain regions of vehicle- and THC-treated 

∆cJun overexpressing (ΔcJun-ON) and control (ΔcJun-OFF) mice expressed as percent of net-

stimulated binding in control vehicle-treated mice. Vehicle-treated ΔcJun-ON mice exhibited 

significantly greater net-stimulated [
35

S]GTPγS binding in the amygdala compared to ΔcJun-

OFF mice (p < 0.01, Bonferroni post-hoc test).  Net-stimulated [
35

S]GTPγS binding was 

significantly decreased in all brain regions of THC- versus vehicle-treated ΔcJun-ON and ΔcJun-

OFF mice, with the exception of caudate-putamen of ΔcJun-OFF mice. There were no 

differences in net-stimulated [
35

S]GTPγS binding between ΔcJun-ON and ΔcJun-OFF mice 

following repeated THC-administration. Data are normalized to percent vehicle-treated control 

mice and presented as means ± SEM (n = 8-10 mice per group) ** p < 0.01 and *** p < 0.001 as 

compared to vehicle-treated control.  ## p < 0.01 and ### p < 0.001 as compared to vehicle-

treated ΔcJun-ON mice following two-way ANOVA and Bonferroni post-hoc test.  
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TABLE 2.2 

Net CP55,940-stimulated [
35

S]GTPγS binding in brain sections from ∆cJun-OFF and 

ΔcJun-ON mice following repeated vehicle or THC treatment. 

 Net CP55,940-stimulated [
35

S]GTPγS binding (nCi/g) ± SEM 

Brain Region ∆cJun-OFF 

Vehicle 

∆cJun-OFF  

THC 

ΔcJun-ON 

Vehicle 

ΔcJun-ON    

THC 

Prefrontal Cortex 

 
340 ± 16 185 ± 13*** 355 ± 13 193 ± 12

###
 

Nucleus 

Accumbens 
227 ± 23 99 ± 19** 275 ± 36 155 ± 16

##
 

Caudate-

Putamen 

 

114 ± 16 

 

 

70 ± 17 

 

 

153 ± 16 

 

 

68 ± 16
##

 

 

Globus Pallidus 

 

535 ± 30 

 

 

244 ± 36*** 

 

 

486 ± 44 

 

 

279 ± 24
###

 

 

Hippocampus 

 

107 ± 9 

 

 

19 ± 13*** 

 

 

118 ± 36 

 

 

44 ± 23
###

 

 

 

Amygdala 

 

218 ± 16 62 ± 9*** 282 ± 15** 100 ± 15
###

 

 

VTA 

 

274 ± 17 66 ± 7*** 247 ± 18 79 ± 10
###

 

Substantia Nigra 

 

467 ± 29 

 

 

260 ± 28*** 

 

 

479 ± 29 

 

 

277 ± 29
###

 

 

 

Cerebellum 

 

250 ± 19 128 ± 11*** 227 ± 24 126 ± 16
###

 

Brain sections were incubated in 0.04 nM [
35

S]GTPγS, 3 µM CP55,940 and 2 mM GDP and 

autoradiograms were analyzed using densitometry.  Results are expressed as net CP55,940-

stimulated [
35

S]GTPγS binding (nCi/g) ± SEM, one-way ANOVA, Bonferroni post-hoc test.  ** 

p < 0.01, ***p < 0.001 vs. ∆cJun-OFF vehicle.  ## p < 0.01, ### p < 0.001 vs. cJun-ON vehicle. 

(n = 8-10 per group) 
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Figure 2.4 Representative autoradiograms showing CP55,940-stimulated [
35

S]GTPγS binding in 

ΔcJun-OFF and -ON mice following repeated vehicle or THC (10-30-60 mg/kg, b.i.d., 6.5 days) 

treatment in regions of the basal ganglia. 
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Figure 2.5  Net-stimulated [
35

S]GTPγS binding in ∆FosB (A) and ∆cJun (B) overexpressing 

mice expressed as a percent of net-stimulated [
35

S]GTPγS binding in the respective vehicle-

treated mice.  As a percentage of their respective vehicles, ΔFosB-ON mice had less 

desensitization following repeated THC administration in substantia nigra (**p < 0.001) and 

amygdala (*p < 0.05).  ΔcJun-ON mice had less desensitization in hippocampus (*p < 0.05) and 

ventral tegmental area (*p < 0.05).  Data are normalized to values in respective vehicle-treated 

mice and represented as mean ± SEM, Student’s t-tests based on planned comparisons by region.  

PFC, prefrontal cortex; NAC, nucleus accumbens; CPU, caudate-putamen; GP, globus pallidus; 

HIP, hippocampus; AMYG, amygdala; VTA, ventral tegmental area; SN, substantia nigra; 

CBLM, cerebellum. 
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Tolerance to THC-induced locomotor suppression is enhanced in ΔFosB-ON mice following 

repeated THC treatment 

THC-mediated in vivo effects were assessed to determine the effect of ∆FosB 

overexpression on THC-mediated responses and the development of tolerance after repeated 

THC administration. The dose-effect response for THC in ∆FosB-OFF and ΔFosB-ON mice was 

first determined for THC-mediated hypothermia, antinociception and catalepsy (data not shown).  

Based on these results, mice were tested with 100 mg/kg THC in subsequent studies.  Responses 

were then compared in repeated vehicle- versus THC-treated mice of each genotype. No 

significant differences in baseline measures of body temperature, nociception or locomotor 

activity were found between vehicle and THC-treated ∆FosB-ON or ∆FosB-OFF mice (data not 

shown).  Neither ∆FosB-ON nor ∆FosB-OFF mice exhibited baseline catalepsy.  Acute THC 

(100 mg/kg) injection produced hypothermia, antinociception and catalepsy in vehicle-treated 

∆FosB-ON and ∆FosB-OFF mice, with no significant effect of genotype on THC-mediated 

responses. Comparison of THC-mediated hypothermia in repeated vehicle- versus THC-treated 

∆FosB-ON and ∆FosB-OFF mice showed a main effect of repeated treatment (F1,28 = 84.01, p < 

0.001, Figure 2.6 A ).  There was no significant difference in hypothermia between ΔFosB-ON 

and ∆FosB-OFF mice that received repeated THC. An effect of repeated THC treatment was also 

found for antinociception (F1,28 = 69.66, p < 0.001, Figure 2.1 B), but there were no significant 

differences between ∆FosB-OFF and ΔFosB-ON mice that received repeated THC. A main 

effect of repeated THC treatment was also found for catalepsy (F1,28 = 94.54, p < 0.001, Figure 

2.6 C).  Because catalepsy was not produced by100 mg/kg THC for either ∆FosB-OFF or 

ΔFosB-ON mice that received repeated THC, a separate group of mice was tested at 200 mg/kg.  

At this dose, these mice exhibited catalepsy, but no significant difference was found between 
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groups (data not shown). There was a significant main effect of THC treatment for locomotor 

activity (F1,27 = 39.00, p < 0.001, Figure 2.6 D). Bonferroni post-hoc test determined that THC-

treated ΔFosB-ON mice exhibited significantly less THC-mediated locomotor suppression 

compared to vehicle-treated ΔFosB-ON mice (p < 0.001, Figure 2.6 D), whereas THC-mediated 

locomotor suppression was similar between vehicle- and THC-treated ∆FosB-OFF mice.  A 

significant interaction F(1,27 = 9.986, p < 0.01, Figure 2.6 D) was also found and Bonferroni post-

hoc test determined that ΔFosB-ON mice that received repeated THC administration exhibited 

less locomotor suppression compared to ∆FosB-OFF mice that received repeated THC 

administration (p < 0.01, Figure 2.6 D).   Overall, these results show that THC-treated ∆FosB-

ON and ∆FosB-OFF mice developed tolerance to THC-mediated hypothermia, antinociception 

and catalepsy that was similar between genotypes.  A genotype-specific difference in the effect 

of repeated THC was found for locomotor activity, where tolerance appeared to develop in the 

∆FosB-ON, but not ∆FosB-OFF, mice. 

Activity data were analyzed to assess thigmotaxis, which is defined as hugging the wall 

and can be considered a measure of anxiogenic-like behavior (Simon et al., 1994). There were no 

significant differences in baseline measures of thigmotaxis between any groups. ΔFosB-OFF and 

ΔFosB-ON mice, with mice spending equal time near the wall and center of the chamber (Figure 

2.8 A). Following acute THC administration, there was a significant main effect of genotype 

(F1,27 = 11.71, p < 0.05) and an interaction (F1,27 = 11.43, p < 0.05), suggesting differences in the 

expression of thigmotaxis between ΔFosB-ON and ΔFosB-OFF mice.  Bonferroni post-hoc test 

determined that repeated THC-treated ∆FosB-OFF mice exhibited a significant increase in time 

spent on the outside zone of the chamber (333% ± 109%, p < 0.05, Figure 2.8 C) compared to 

∆FosB-OFF mice that received repeated vehicle (102% ± 33%) and ΔFosB-ON mice that 
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received repeated THC (85% ± 23%).  These findings suggest that repeated THC administration 

can unmask thigmotaxis in mice that receive 100 mg/kg THC. 
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Figure 2.6   THC-mediated hypothermia (A), antinociception (B), catalepsy (C) and locomotor 

suppression (D) in ΔFosB overexpressing (ΔFosB-ON) and control (ΔFosB-OFF) mice 

following repeated vehicle or THC treatment.   ΔFosB-ON and ΔFosB-OFF mice treated with 

repeated vehicle exhibited THC-mediated hypothermia, antinociception, catalepsy and locomotor 

suppression and repeated THC-administration reduced these effects.  ΔFosB-ON mice exhibited 

significantly less THC-mediated locomotor suppression following repeated THC administration 

compared to ΔFosB-OFF mice that received repeated THC administration (p < 0.001 THC-

treated ∆FosB-ON vs. THC-treated ΔFosB-OFF mice).  Data are presented as mean percent of 

respective vehicle ± SEM (n = 8 mice per group).  * p < 0.05, *** p < 0.001 as compared to 

vehicle-treated control.  # p < 0.05 ###, p < 0.001 compared to vehicle-treated ΔFosB-ON mice.  

^^, p < 0.01 compared to THC-treated control mice.  Two-way ANOVA following Bonferroni 

post-hoc test. 
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Tolerance to THC-mediated catalepsy is reduced, whereas tolerance to locomotor suppression is 

enhanced, in ΔcJun-ON mice following repeated THC administration 

∆cJun-ON and ∆cJun-OFF mice were assessed to determine whether blocking ΔFosB-

mediated transcription would affect THC-mediated in vivo effects or tolerance. No significant 

differences were found in baseline measures of body temperature, nociception, or locomotor 

activity between any groups (data not shown). Acute THC administration in repeated vehicle-

treated ΔcJun-OFF and ΔcJun-ON mice, produced hypothermia, antinociception, catalepsy and 

locomotor suppression.  THC-mediated responses were then compared between THC- and 

vehicle-treated mice of each genotype.  There was a significant main effect of repeated treatment 

on hypothermia (F1, 32 = 80.98, p < 0.001, Figure 2.7 A), but not a significant interaction between 

treatment and genotype.  Bonferroni post-hoc test determined no significant difference between 

ΔcJun-ON and ΔcJun-OFF mice that received either repeated vehicle or THC treatments.  

Similarly, there was a significant main effect of repeated treatment for antinociception (F1, 32 = 

84.15, p < 0.001, Figure 2.7 B) in both ΔcJun-ON mice and ΔcJun-OFF mice.  Bonferroni post-

hoc test determined no differences between genotypes for this measure.  For catalepsy, there was 

a significant main effect of treatment (F1, 30 = 58.66, p < 0.001, Figure 2.7 C), as well as a 

significant main effect of genotype (F1, 30 = 6.36, p < 0.05) and an interaction (F1, 30 = 6.36, p < 

0.05).  Bonferroni post-hoc test determined that ΔcJun-ON mice exhibited significantly more 

THC-induced catalepsy compared to ΔcJun-OFF mice (p < 0.001, Figure 2.7 C).   Likewise, 

there was a significant main effect of treatment for locomotor suppression in ΔcJun-ON and 

ΔcJun-OFF mice (F1, 30 = 59.57, p < 0.001, Figure 2.7 D), as well as a significant main effect of 

genotype (F1, 30 = 6.36, p < 0.05) and an interaction (F1, 30 = 6.36, p < 0.05).  Bonferroni post-hoc 
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test determined that ΔcJun-ON mice that received repeated THC administration exhibited less 

locomotor suppression compared to control mice that received repeated THC administration (p < 

0.01, Figure 2.7 D).  These results indicate that less tolerance to THC-mediated catalepsy and 

more tolerance to THC-mediated locomotor suppression developed in ∆cJun-OFF compared to 

∆cJun-ON mice, whereas tolerance to hypothermia and antinociception did not differ between 

genotypes.  Thigmotaxis was also measured in ΔcJun-ON and ∆cJun-OFF mice.  There was no 

significant difference in baseline or THC-induced thigmotaxis between ΔcJun-OFF and ΔcJun-

ON mice following either repeated vehicle or THC administration, (Figure 2.8 B and D). 
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Figure 2.7    THC-mediated hypothermia (A), antinociception (B), catalepsy (C) and locomotor 

suppression (D) in ΔcJun overexpressing (ΔcJun-ON) and control (ΔcJun-OFF) mice following 

repeated vehicle or THC treatment.  ΔcJun-OFF and ΔcJun-ON mice treated with repeated 

vehicle exhibited THC-mediated hypothermia, antinociception, catalepsy and locomotor 

suppression and repeated THC-administration reduced these effects.  ΔcJun-ON mice that 

received repeated THC administration exhibited significantly less catalepsy compared to control 

mice (p < 0.001).  ΔcJun-ON mice that received repeated THC administration also exhibited 

signficantly less locomotor suppression compared to control mice (p < 0.01).  Data are presented 

as percent of respective vehicle with mean ± SEM (n = 8-10 mice per group). * p < 0.05, *** p < 

0.001 as compared to vehicle-treated control.  # p < 0.05 ###, p < 0.001 compared to vehicle-

treated ΔcJun-ON.  ^^^, p < 0.001 compared to THC-treated control mice.  Two-way ANOVA 

following Bonferroni post-hoc test.   
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Figure 2.8  Baseline thigmotaxis in (A) ΔFosB-OFF and ΔFosB-ON mice and (B) ΔcJun-OFF 

and ΔcJun-ON mice.  Baseline thigmotaxis did not differ for either ΔFosB-ON/OFF or ΔcJun-

ON/OFF mice following either repeated vehicle or THC.  (C) ΔFosB-OFF mice that received 

repeated THC administration exhibited significantly greater THC-mediated thigmotaxis 

compared to both control mice that received repeated vehicle (p < 0.05) and ΔFosB-ON mice 

that received repeated THC (p < 0.05).  (D) THC-mediated thigmotaxis was similar in ΔcJun-

ON/OFF mice that received either repeated vehicle or THC. Data are presented as percent of 

time spent in the outside zone/time spent in the inside zone x 100 ± SEM (n = 8-10 mice per 

group). * p < 0.05 compared to vehicle-treated control mice and ^ p < 0.05 compared to THC-

treated control mice following two-way ANOVA following Bonferroni post-hoc test.   
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2.4 Discussion 

The present study was conducted to determine whether expression of ∆FosB regulates 

CB1R-mediated G-protein signaling after acute or repeated activation by cannabinoids.  Regional 

analyses in brains from vehicle-treated mice showed that overexpression of ∆FosB attenuated 

CP55,940-stimulated [
35

S]GTPγS binding in the amygdala, whereas functional inactivation of 

∆FosB by expression of ∆cJun enhanced cannabinoid-stimulated activity. Expression of ∆FosB 

also attenuated CB1R desensitization in the amygdala, further supporting a role for this 

transcription factor in CB1R signaling in the amygdala. ∆FosB expression did not affect CB1R-

mediated G-protein activity in the striatum of vehicle-treated mice, consistent with our previous 

findings (Sim-Selley et al., 2011) and suggesting that the effect of ∆FosB on CB1R signaling is 

region-dependent. We proposed that ∆FosB might inhibit CB1R desensitization following 

repeated THC treatment based in part on the finding that THC-induced CB1R desensitization and 

∆FosB induction exhibited an inverse regional relationship (Chapter 1). Overexpression of 

∆FosB in D1R-positive MSNs attenuated CB1R desensitization in the substantia nigra and VTA, 

targets of MSNs of the direct striatal pathway.  Expression of ∆cJun in D1R and D2R positive 

MSNs enhanced CB1R desensitization in the caudate-putamen and enhanced tolerance to THC-

mediated locomotor suppression.  However, ∆cJun expression also reduced tolerance to THC-

mediated catalepsy and ∆FosB expression enhanced tolerance to locomotor suppression.  Despite 

these unexpected results, the effects of ∆FosB and ∆cJun expression on CB1R desensitization in 

striatal circuits and of ∆cJun on tolerance to locomotor suppression support our hypothesis that 

∆FosB can inhibit CB1R desensitization.  

Bitransgenic mice overexpress ΔFosB or ΔcJun in the caudate-putamen, nucleus 

accumbens, cerebral cortex and hippocampus (Chen et al., 1998; Peakman et al., 2003).  
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Tolerance to THC-mediated hypothermia and antinociception did not differ between mice 

overexpressing ΔFosB or ∆cJun and their controls, which agree with the restricted anatomical 

overexpression of ∆FosB/∆cJun in these mice.  Cannabinoid-induced hypothermia is associated 

with CB1R activity in the preoptic area (Rawls et al., 2002) and antinociception involves CB1Rs 

in the PAG and spinal cord (Lichtman and Martin, 1991).  Both mouse lines overexpress the 

appropriate transcription factor in D1R/dynorphin MSNs of the caudate-putamen and nucleus 

accumbens, whereas ΔcJun is also overexpressed in D2R/enkephalin MSNs.  Overexpression of 

∆FosB or ∆cJun did not affect CB1R signaling the caudate-putamen or nucleus accumbens of 

drug naïve mice, as we previously reported in homogenates prepared from the nucleus 

accumbens (Sim-Selley et al., 2011).  Mice overexpressing ΔFosB that were treated with 

repeated THC did not exhibit differences in CB1R desensitization in the caudate-putamen or 

nucleus accumbens when compared to control mice.  Mice overexpressing ΔcJun showed 

enhanced CB1R desensitization in the caudate-putamen, but no difference in the nucleus 

accumbens.  The finding that functional inhibition of ΔFosB by ∆cJun expression enhanced 

CB1R desensitization supports our hypothesis, but ΔFosB overexpression did not enhance 

desensitization as we would predict.  It is possible that the result in the ΔFosB overexpressing 

mice is due to the restricted overexpression to only D1R-positive MSNs.  CB1Rs in the caudate-

putamen and nucleus accumbens are expressed by both D1R and D2R MSN populations, as well 

as on glutamatergic, but not dopaminergic, afferent projections (Hohmann and Herkenham, 

2000; Pickel et al., 2004). It is also possible that the dose of THC administered in this study was 

sufficient to overcome the effects of ΔFosB in reducing CB1R desensitization.   

  CB1R desensitization was measured in the substantia nigra and VTA, the projection 

regions of the caudate-putamen and nucleus accumbens, respectively. D1R/dynorphin MSNs 
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comprise the direct pathway that projects from the striatum to the substantia nigra, which has a 

very high density of CB1Rs, and VTA (Fitzgerald et al., 2012).  Mice overexpressing ΔFosB in 

D1R-positive MSNs exhibited less CB1R desensitization in both the substantia nigra and VTA, 

suggesting that ΔFosB inhibited CB1R desensitization in these terminal field regions.  The direct 

pathway is associated with activation of locomotor activity (Kravitz et al., 2010), but it is not 

clear if the locomotor suppressing effect of THC is mediated through activation of CB1Rs in this 

pathway (Monory et al., 2007). THC-treated ∆cJun mice showed enhanced tolerance to THC-

mediated locomotor inhibition, which corresponds to the enhanced CB1R desensitization 

measured in the caudate-putamen.  Surprisingly, THC-treated mice that overexpressed ΔFosB 

exhibited greater tolerance to locomotor suppression. However, studies have reported that 

unilateral intra-nigral injections of THC alone (Sanudo-Pena et al., 1996) or in combination with 

muscimol (Wickens and Pertwee, 1995) produced contralateral circling, an indicator of 

hyperactivity (Amalric and Koob, 1989).  Furthermore, systemic THC administration in mice 

that have a unilateral lesion of the substantia nigra produced ipsilateral circling, similar to 

amphetamine (Sakurai et al., 1985).  Therefore, it is possible that mice overexpressing ΔFosB 

exhibited less desensitization in the substantia nigra, but similar desensitization occurred in other 

basal ganglia regions, therefore they exhibited greater locomotor activity.  This would agree with 

studies indicating that inhibition of glutamatergic neurotransmission contributes to cannabinoid-

mediated locomotor suppression (Monory et al., 2007). 

The finding that control mice exhibited significantly more thigmotaxis when compared to 

mice overexpressing ΔFosB might also be relevant to the interpretation of these data.  

Thigmotaxis is considered an anxiogenic-like phenotype (Simon et al., 1994) and mice 

exhibiting this behavior also tend to exhibit locomotor suppression (Hoy et al., 1999).  It is 
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possible that ΔFosB overexpressing mice displayed more exploratory behavior because they did 

not exhibit an anxiogenic-like phenotype.   

Mice overexpressing ΔcJun exhibited significantly more catalepsy following repeated 

THC administration compared to controls, suggesting that less tolerance developed.  Early 

research suggested that the globus pallidus was involved in modulating cannabinoid-mediated 

catalepsy (Wickens and Pertwee, 1993); however more recent research has also implicated the 

nucleus accumbens (Sano et al., 2008).  Our finding that mice overexpressing ΔcJun exhibited 

less desensitization in the VTA would support this more recent finding because D1R/dynorphin 

MSNs in the nucleus accumbens project to the VTA.  One caveat is that there was also less 

desensitization in the VTA of mice overexpressing ΔFosB, but no difference in catalepsy was 

found between ∆FosB-ON and ∆FosB-OFF mice.  ΔFosB bitransgenic mice are a cross between 

FVB and C57BL/6J mouse strains (Chen et al., 1998), whereas ΔcJun mice are on a pure FVB 

background (Peakman et al., 2003).  There are ~49% more dopaminergic neurons in the VTA of 

FVB mice compared to C57BL/6J mice (Nelson et al., 1996), suggesting a possible strain-

dependent difference that could affect the results. 

Overexpression of ΔcJun in both the D1R/dynorphin and D2R/enkephalin MSN 

populations did not enhance desensitization in either the substantia nigra or globus pallidus, but 

did reduce desensitization in the VTA.  This finding suggests that dominant negative inhibition 

of ΔFosB can also reduce CB1R desensitization; however, ΔcJun also inhibits the transcriptional 

regulation of other Fos family members (Peakman et al., 2003), making it difficult to determine 

if this effect is due to inhibition of ΔFosB alone.  Moreover, this same effect was found in the 

hippocampus of ΔcJun overexpressing mice, a region in which ΔFosB is not induced by repeated 

THC administration (Chapter 1).  This finding in the hippocampus is the first to demonstrate a 
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possible mechanism through which CB1R desensitization could be inhibited in this region.  It is 

not clear which Fos family member(s) might be involved, but c-Fos and FosB are likely 

candidates because they are also induced by THC administration in both nucleus accumbens and 

hippocampus (Marie-Claire et al., 2003; Porcella et al., 1998; Rubino et al., 2006).  ΔFosB is 

known to regulate c-Fos induction (Renthal et al., 2008) so it is possible that overexpression of 

both ΔFosB and ΔcJun could inhibit c-Fos transcription and reduce CB1R desensitization. 

Overexpression of ΔFosB or ΔcJun produced opposing effects on CB1R G-protein 

signaling in the amygdala of drug-naive mice.  Basal levels of ∆FosB are normally low in the 

amygdala, but administration of drugs of abuse, including opioids, cocaine, ethanol and THC, 

induce ∆FosB expression (Perrotti et al., 2008).  This suggests that CB1R signaling in the 

amygdala could be altered after use of these drugs.  Systemic administration of cannabinoids 

typically produces a biphasic effect in anxiety-like behaviors, where lower doses produce 

anxiolytic-like effects and higher doses produce anxiogenic-like effects (Viveros et al., 2005), 

and these anxiogenic effects are mediated by the basolateral amygdala  (Rubino et al., 2008).  It 

is important to note that Rubino et al. 2008 found that these anxiogenic effects were evident at 

lower doses of THC (1 µg/microinjection) but not at higher doses.  The amygdala is also 

involved in drug reinstatement as research suggests its involvement in consolidation of drug-

paired cues (Luo et al., 2013). Specifically, excitotoxic lesion of the basolateral amygdala 

abolishes cocaine conditioned place preference (Fuchs et al., 2002) and heroin-induced 

reinstatement (Fuchs and See, 2002).  

  Following repeated THC administration, there was a significant difference between 

ΔFosB-ON and ΔFosB-OFF mice for both CB1R-desensitization in amygdala and THC-

mediated thigmotaxis.  Mice overexpressing ΔFosB had significantly less CB1R desensitization 
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in the amygdala and also exhibited a similar amount of thigmotaxis as mice that received 

repeated vehicle.  It appears that significant desensitization in amygdala can unmask an 

anxiogenic-like phenotype in mice given 100mg/kg THC.  The differences in CB1R G-protein 

signaling in the amygdala are surprising because neither ΔFosB nor ΔcJun overexpression is 

found in the amygdala of these transgenic mice (Chen et al., 1998; Peakman et al., 2003), which 

suggests that these effects result from afferent projections to amygdala from another brain 

region.  Immunohistochemical and electron microscopic data suggest that CB1Rs are found 

primarily on cholecystokinin (CCK)-positive GABAergic interneurons and on symmetrical 

(glutamatergic) synapses in the amygdala (Katona et al., 2001; Marsicano and Lutz, 1999; Tsou 

et al., 1998).  

Overexpression of either ΔFosB or ΔcJun reduced CB1R desensitization in a brain 

region-dependent manner.  These results suggest that transcriptional regulation of CB1Rs by Fos 

family members regulates desensitization in different brain regions.  Inhibition of ERK 

phosphorylation modulated CB1R desensitization in the caudate-putamen and cerebellum, but 

not in the prefrontal cortex and hippocampus (Rubino et al., 2005).  However, it is not known 

whether ΔFosB or ΔcJun modulates ERK activity.  Another possible mechanism could be the 

repression of c-Fos expression by ΔFosB (Renthal et al., 2008). THC-mediated c-Fos induction 

is attenuated following repeated THC administration in the striatum (Miyamoto et al., 1997) and 

prefrontal cortex (Rubino et al., 2004).  Therefore, inhibition of c-Fos by either ΔFosB or ΔcJun 

could explain reduced CB1R desensitization in some regions.           

Overall, these studies suggest a role for the Fos family of transcription factors in 

modulating CB1R desensitization; specifically, ΔFosB can reduce desensitization and dominant 

negative inhibition of ΔFosB can enhance CB1R desensitization in certain forebrain regions.  
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Results in mice with overexpression of ΔcJun also suggest a possible role for Fos family 

members in reducing CB1R desensitization, especially in hippocampus.  This result may provide 

a mechanism through which the memory impairing effects of THC could be mitigated.  

Reductions in CB1R desensitization led to reductions in the development of tolerance to certain 

cannabinoid-mediate behaviors, whereas enhanced CB1R desensitization led to enhanced 

tolerance.  These findings further support the hypothesis that CB1R desensitization contributes to 

the development of tolerance to cannabinoid-mediated effects and provide new insights into the 

role transcription factors play in mediating both desensitization and tolerance.   
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Chapter 3: Role of dopamine type 1 receptors and DARPP-32 in THC-mediated induction 

of ΔFosB in forebrain regions 

3.1 Introduction 

Cannabinoids including THC, the primary psychoactive constituent of marijuana, 

produce rewarding and motor effects by activating CB1Rs in the mesolimbic and nigrostriatal 

systems (Haring et al., 2011; Shi et al., 2005; Steiner et al., 1999; Tanda and Goldberg, 2003).  

Anatomical and functional studies have shown that cannabinoid-mediated reward and motor 

effects are produced by interactions of CB1Rs with dopamine systems in these circuits 

(Fitzgerald et al., 2012; Glass and Felder, 1997; Julian et al., 2003; Seif et al., 2011).  For 

example, CB1Rs enhance dopamine release in the striatum directly and by regulating the activity 

of midbrain dopaminergic neurons (Cheer et al., 2003; Gardner, 2005a; Wu and French, 2000).  

CB1Rs in the caudate-putamen and nucleus accumbens are located on both axonal projections 

from other regions, including glutamatergic projections from the cortex, and expressed by  

GABAergic MSNs of the direct and indirect pathways, which predominantly express D1Rs and 

dynorphin or D2Rs and enkephalin, respectively (Hohmann and Herkenham, 2000; Pickel et al., 

2004).  THC produces some of the same cellular effects as other drugs of abuse, including an 

increase in phosphorylation of the dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa 

(DARPP-32) at threonine 34 (Bateup et al., 2008; Borgkvist et al., 2008) and induction of ∆FosB 

in the striatum (McClung et al., 2004; Perrotti et al., 2008)(Chapter 1).  Dopamine D1Rs and 

DARPP-32 increase neuronal activity in D1R/dynorphin MSNs, and this activity is thought to 

contribute to the rewarding effects of drugs of abuse (Le Foll et al., 2009).  Currently, the role of 

the D1R system in THC-mediated ∆FosB induction in the striatum is not clearly defined. 

∆FosB, a stable transcription factor, accumulates in striatal neurons during repeated 
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treatment with drugs of abuse (Perrotti et al., 2008).   Transgenic overexpression of ΔFosB 

enhanced the rewarding effects of cocaine (Colby et al., 2003) and morphine (Zachariou et al., 

2006a), whereas expression of a dominant negative form of its binding partner, ∆cJun, reduced 

conditioned place preference at lower doses of cocaine and at higher doses of morphine  

(Peakman et al., 2003; Zachariou et al., 2006a). We reported that repeated THC-mediated ∆FosB 

induction in the striatum was abolished in mice lacking CB1Rs (Chapter 1). Anatomical studies 

showed that CB1Rs were both co-localized with ∆FosB in striatal neurons and also expressed in 

puncta surrounding FosB/ΔFosB positive neurons (Chapter 1).  The latter observation suggests 

that THC might trans-synaptically induce ∆FosB in striatal neurons.  CB1Rs enhance dopamine 

release in the striatum (Oleson and Cheer, 2012), which would activate D1Rs and provides a 

potential trans-synaptic mechanism for ∆FosB induction.  Consistent with this hypothesis, 

ΔFosB expression is primarily restricted to the D1R/dynorphin containing MSNs in the striatum 

following repeated cocaine administration (Moratalla et al., 1996; Nye et al., 1995).  Moreover, 

previous studies showed that the D1R antagonist, SCH23390, blocked induction of ΔFosB by 

cocaine (Nye et al., 1995) and morphine (Muller and Unterwald, 2005).  Thus, by analogy with 

other abused drugs, THC might also induce ∆FosB via D1R activation.  

The role of D1Rs in the central nervous system has been demonstrated for several drugs 

of abuse, but the signaling pathways that mediate these effects are under investigation. D1R 

agonists and psychomotorstimulants increase phosphorylation of DARPP-32 at threonine 34 in 

D1R/dynorphin MSNs (Bateup et al., 2008).   When DARPP-32 is phosphorylated at this site, it 

becomes an inhibitor of protein phosphatase-1, which results in the enhancement in the 

phosphorylation of substrates downstream of protein kinase A (PKA) (Desdouits et al., 1995; 

Hemmings et al., 1984a; Kwon et al., 1997). ΔFosB induced by repeated cocaine administration 
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was attenuated in mice with genetic deletion of DARPP-32 or mutation of the threonine 34 site 

to prevent protein kinase A (PKA)-mediated phosphorylation (Hiroi et al., 1999; Zachariou et al., 

2006b).  The CB1R agonist CP55,940 increased phosphorylation of DARPP-32 at threonine 34 

in the striatum, which was blocked by adenosine 2A (A2A) or D2R antagonists and in mice with 

genetic deletion of these receptors (Andersson et al., 2005).  Administration of THC also 

increased phosphorylation of DARPP-32 at threonine 34 in the striatum, and this effect was 

blocked by antagonism of A2A or D1 receptors (Borgkvist et al., 2008). DARPP-32 also 

contributes to cannabinoid-mediated in vivo effects.  Genetic deletion of DARPP-32 or mutation 

of the PKA site at threonine 34 reduced CP55,940-induced catalepsy (Andersson et al., 2005).  

Phosphorylation of DARPP-32 at threonine 34 is known to increase PKA activity (Blank et al., 

1997), which could also interfere with the development of tolerance to this cannabinoid-

mediated effect because inhibition of PKA has been shown to reduce tolerance to the locomotor 

suppressing effects of THC (Bass et al., 2004).    

  While it is clear that D1Rs can modulate the induction of ∆FosB produced by 

psychomotorstimulants and opioids, the role of D1Rs in THC-mediated ∆FosB induction is not 

known.  The current study was conducted to determine whether THC-mediated induction of 

ΔFosB is D1R-dependent and whether THC-induced ∆FosB is localized to D1R-positive MSNs 

of the caudate-putamen and nucleus accumbens.  The role of DARPP-32 in THC-mediated 

∆FosB induction was also investigated because this protein is downstream of dopamine receptors 

and also modulates ΔFosB induction. The contribution of dopamine-mediated signaling to THC-

mediated in vivo responses was determined by testing naïve and THC-treated DARPP-32 

knockout mice.  Results showed that D1Rs and DARPP-32-mediated signaling are involved in 

THC-mediated ΔFosB induction and that genetic deletion of DARPP-32 enhances both acute 
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THC-mediated locomotor suppression and tolerance to this response.   

 

3.2 Materials and Methods 

Materials 

Sources of THC and antibodies are provided in Chapter 1.  Goat anti-preprodynorphin 

antibody was purchased from Millipore (Billerica, MA).  (R)-(+)-7-Chloro-8-hydroxy-3-methyl-

1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) and (6aS-trans)-11-

Chloro-6,6a,7,8,9,13b-hexahydro-7-methyl-5H-benzo[d]naphth[2,1-b]azepin-12-ol 

hydrobromide (SCH39166) were purchased from Tocris Bioscience (Minneapolis, MN).  Refer 

to Chapter 1 for secondary antibodies and mounting media.   All other reagent grade chemicals 

were obtained from Sigma Chemical Co. or Fisher Scientific. 

Subjects and Drug treatments  

Male ICR mice (n=8 per group) (Harlan Laboratories, Indianapolis, IN) weighing 25-30 

grams were used to assess the effect of D1R antagonists on THC-mediated ∆FosB induction. All 

mice were housed four to six per cage and maintained on a 12-hr light/dark cycle in a 

temperature controlled environment (20-22°C) with food and water available ad libitum. THC 

was dissolved in a 1:1:18 solution of ethanol, emulphor and saline (vehicle).  SCH23390 and 

SCH39166 were dissolved in saline.  SCH23390 is a high affinity D1R antagonist with agonist 

properties at 5HT1/2c receptors and SCH39166 is a high affinity D1R antagonist with lower 

affinity for D2R, 5-HT and A2A receptors. Mice were pretreated with an intraperitoneal (i.p.) 

injection of either saline or 1 mg/kg SCH23390 or SCH39166 and 30 minutes later were injected 

subcutaneously (s.c.) with either THC (ramping doses of 10-20-30 mg/kg increased every 2 

days) or vehicle at 08:00 and 16:00 h for 6 days.  On day 7, mice received morning injections 
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only, and 24 hours later mice were sacrificed by decapitation and brains were extracted.  A 

separate group of male ICR mice (n = 4) was treated with THC or vehicle using the same 

treatment protocol for co-localization studies.   

DARPP-32 knockout mice on a C57BL/6J background and littermate controls (Hiroi et 

al., 1999)(n = 8 per group) were used to determine the role of DARPP-32 in THC-mediated 

∆FosB induction and THC-mediated in vivo effects.  Mice were treated using a protocol that we 

have shown produces ΔFosB induction in C57BL/6J mice  (Chapter 1).  Mice were injected (s.c.) 

with 10 mg/kg THC or vehicle at 08:00 and 16:00 h for 13 days.  On day 14, mice received only 

a single injection (08:00), and 24 hours later mice were assessed for THC-induced 

antinociception, hypothermia, catalepsy and locomotor suppression.  24 hours after in vivo 

assessment, mice were sacrificed by decapitation and brains were extracted.  All experiments 

were performed with the approval of the Institutional Animal Care and Use Committee at 

Virginia Commonwealth University in accordance with the National Institutes of Health guide 

for the care and use of Laboratory animals 7
th

 edition.  

Brain Dissections  

Brain regions were dissected as described in Chapter 1.  For these experiments, the 

amygdala dissection included the central nucleus and basolateral and basomedial nuclei.  

Immunoblot 

Immunoblots were conducted as detailed in the Methods section of Chapter 1. 

Immunohistochemistry 

Preprodynorphin was used as a marker for D1R/dynorphin MSNs to determine the 

localization of ΔFosB/FosB following repeated THC administration in this MSN population.  
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Refer to Chapter 1 for incubation and washing methods.   Slides were incubated overnight at 4°C 

in PBS containing 2.5% normal donkey serum and antibodies against preprodynorphin (1:500; 

guinea-pig) and FosB/ΔFosB (1:500; sc-48/rabbit).  Refer to Chapter 1 for capturing methods.  

Images were taken at 40 X magnification and the number of cells that were positive for DAPI 

was counted.    Then, the numbers of cells that contained FosB/ΔFosB-ir + dynorphin-ir or 

FosB/ΔFosB-ir alone were counted.  ~40-50 cells per image for 4 separate animals per treatment 

group were counted and averaged together.       

Assessment of in vivo responses 

The measures of nociception, body temperature, spontaneous activity and catalepsy were 

done as described in Chapter 2.  Baseline measures were assessed for all behaviors, and then 

separate groups of mice were injected (i.p.) with 70 mg THC or vehicle.  Locomotor suppression 

was determined 20 minutes after THC injection and measures for catalepsy, antinociception and 

hypothermia were assessed 30, 60, 120 and 180 minutes after injection, based on the published 

time course for these cannabinoid-mediated affects (Andersson et al., 2005; Wiebelhaus et al., 

2012).  Hyperreflexia was also assessed (Dewey 1986; Patel 2001) and defined as “popcorning” 

or an exaggerated movement due to auditory or tactile cues. 

Statistical Analysis 

For all experiments, data were analyzed with Prism® version X (GraphPad Software, San 

Diego, CA).  For comparisons of ΔFosB expression in D1R antagonist studies, one-way 

ANOVAs were performed with Bonferroni post-hoc test.  For co-localization studies, the number 

of cells containing either FosB/ΔFosB-ir + dynorphin-ir or FosB/ΔFosB-ir alone was normalized 

to the total number of DAPI-containing cells.  One-way ANOVA and Bonferroni post-hoc test 
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were used to determine significance.  For comparison of ΔFosB expression in DARPP-32 

knockout mice, a two-way ANOVA was used with Bonferroni post-hoc test.  For comparisons in 

the development of tolerance to hypothermia and antinociception, a repeated measures ANOVA 

was used with Bonferroni post-hoc test.  For comparisons of catalepsy and locomotor activity, a 

two-way ANOVA was used with Bonferroni post-hoc test.  For hyperreflexia, a z-test was used 

with a Bonferroni adjustment.  Data are represented as % of appropriate controls ± SEM, % MPE 

((test latency - baseline) /(total length of test)] X 100) ± SEM.  Significance was determined with 

p < 0.05.     

3.3 Results 

SCH23390 blocks THC-mediated induction of ΔFosB  

Mice received the D1R antagonist SCH23390 or saline prior to administration of THC or 

vehicle during the 6.5 days of treatment, and ΔFosB expression was measured 24 hours after the 

last injection.  Data were first assessed to determine whether pretreatment with SCH23390 

altered ∆FosB expression in vehicle-treated mice. ∆FosB-ir was significantly increased by 55% 

± 15% in the nucleus accumbens of SCH23390/vehicle compared to saline/vehicle treated mice 

(p < 0.05). Treatment with SCH23390/THC increased ∆FosB expression by 77% ± 21 % 

compared to saline/vehicle control mice (p < 0.01) (Figure 3.2 C), but there was no significant 

difference in ∆FosB-ir between SCH23390/vehicle and SCH23390/THC-treated groups.  There 

were no significant differences between mice pretreated with saline or SCH23390 in the other 

regions examined (Figure 3.2). Because SCH23390 administration induced ∆FosB-ir in the 

nucleus accumbens, subsequent data are presented as the percent of ∆FosB-ir in the respective 

vehicle controls.  The effect of THC on ∆FosB expression was determined by comparing saline 
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pretreated THC- and vehicle-treated mice.  Repeated THC administration significantly increased 

ΔFosB expression compared to saline/vehicle control in the prefrontal cortex by 80% ± 12% 

(F3,28, p <0.05; Figure 3.1 A), in caudate-putamen by 64% ± 17% (F3,28, p <0.01; Figure 3.1 B), 

in nucleus accumbens by 49% ± 9% (F3,28, p <0.05; Figure 3.1 C) and in amygdala by 64% ± 

24% (F3,28, p < 0.05, Figure 3.1 D). Pretreatment with SCH23390 blocked THC-mediated ΔFosB 

induction in all four regions examined, and the levels of ∆FosB-ir did not significantly differ 

between SCH23390/vehicle and SCH23390/THC-treated mice in any region.  These data 

indicate that D1Rs are necessary for THC-mediated induction of ∆FosB in these forebrain 

regions. 
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Figure 3.1  Pretreatment with the D1R antagonist SCH23390 blocked THC-mediated ΔFosB 

induction in the prefrontal cortex, caudate-putamen, nucleus accumbens and amygdala following 

repeated THC administration.  Graphs show ΔFosB-ir expressed as % respective saline/vehicle 

and SCH23390/vehicle controls ± SEM in A) prefrontal cortex, B) caudate-putamen, C) nucleus 

accumbens and D) amygdala.  Repeated THC administration alone significantly increased 

ΔFosB induction in the prefrontal cortex, caudate-putamen, nucleus accumbens and amygdala, 

which was blocked by pretreatment with SCH23390.  One-way ANOVAs were performed to 

determine significance with Bonferroni post-hoc test * p < 0.05 compared to saline/vehicle 

treated mice.  SV = saline/vehicle, ST = saline/THC, DV = SCH23390/vehicle, DT = 

SCH23390/THC  
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Figure 3.2  Repeated administration of SCH23390/vehicle significantly increased ΔFosB in the 

nucleus accumbens.  Graphs representing ΔFosB-ir expressed as % saline/vehicle mice ± SEM in 

A) prefrontal cortex, B) caudate-putamen, C) nucleus accumbens and D) amygdala with 

representative immunoblots.  In the nucleus accumbens, repeated SCH23390 treatment in 

combination with vehicle or THC treatment significantly increased ΔFosB expression compared 

to saline/vehicle controls by 55% ± 15%  (p < 0.05) and 77% ± 21% (p < 0.01), respectively. 

One-way ANOVAs were performed to determine significance with Bonferroni post-hoc test * p 

< 0.05 and ** p < 0.01 compared to saline/vehicle controls.  SV = saline/vehicle, ST = 

saline/THC, DV = SCH23390/vehicle, DT = SCH23390/THC  
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SCH39166 blocks THC-mediated induction of ΔFosB  

SCH23390 administration increased ∆FosB-ir in the nucleus accumbens and can act as an 

agonist at 5HT1 and 5HT2c receptors. Therefore mice were pretreated with another D1R 

antagonist, SCH39166, to confirm the results obtained using SCH23390.  ∆FosB-ir was first 

assessed in vehicle-treated mice to determine whether SCH39166 treatment affected ∆FosB 

expression.  No significant differences were found in ∆FosB-ir between SCH39166/vehicle and 

saline/vehicle treated mice in any region examined (Figure 3.4).  The effect of THC treatment on 

∆FosB-ir was then determined by comparing results in brains from saline-pretreated vehicle- and 

THC-treated mice.  Saline/THC treatment significantly increased ΔFosB expression compared to 

saline/vehicle control in the prefrontal cortex, by 93% ± 30%  (F3,28, p < 0.05; Figure 3.3 A), in 

caudate-putamen by 73% ± 18% (F3,28, p < 0.001; Figure 3.3 B), in nucleus accumbens 58% ± 

16% (F3,28, p < 0.001; Figure 3.3 C) and in amygdala by 61% ± 11% (F3,28, p < 0.01; Figure 3.3 

D).  In the nucleus accumbens, treatment with SCH39166 and THC also significantly increased 

ΔFosB expression compared to the saline/vehicle treatment group 38% ± 4% (F3,28, p < 0.05; 

Figure 3.4 C).  SCH39166 pretreatment blocked THC-induced ΔFosB expression in all brain 

regions examined, because ∆FosB-ir did not significantly differ between brains from 

SCH39166/THC and SCH39166/vehicle-treated mice. These results further support the 

hypothesis that D1Rs are necessary for THC-mediated induction of ∆FosB in the forebrain. 
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Figure 3.3  Pretreatment with the D1R antagonist SCH39166 blocked ΔFosB induction in the 

prefrontal cortex, caudate-putamen, nucleus accumbens and amygdala when administered during 

repeated THC treatment.  Graphs show ΔFosB-ir expressed as % respective saline/vehicle or 

SCH39166/vehicle mice ± SEM in A) prefrontal cortex, B) caudate-putamen, C) nucleus 

accumbens and D) amygdala.  Repeated THC administration alone significantly increased 

ΔFosB-ir in the prefrontal cortex, caudate-putamen, nucleus accumbens and amygdala, which 

was blocked by pretreatment with SCH39166. One-way ANOVAs were performed to determine 

significance with Bonferroni post-hoc test * p < 0.05, ** p < 0.01, ***p < 0.001 compared to 

saline/vehicle mice.  SV = saline/vehicle, ST = saline/THC, DV = SCH39166/vehicle, DT = 

SCH39166/THC  
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Figure 3.4 The combination of the D1R antagonist SCH39166 and THC significantly increased 

ΔFosB expression in nucleus accumbens compared to saline/vehicle control mice.  Graphs 

representing ΔFosB-ir expressed as % saline/vehicle mice ± SEM in A) prefrontal cortex, B) 

nucleus accumbens, C) caudate-putamen and D) amygdala with representative immunoblots.  In 

nucleus accumbens, repeated SCH39166 treatment in combination with THC significantly 

increased ΔFosB expression above saline/vehicle control mice 38% ± 5% (p < 0.05).  Data 

represented as % saline/vehicle control ± SEM.  One-way ANOVAs were performed to 

determine significance with Bonferroni  post-hoc test * p < 0.05 compared to saline/vehicle 

controls.  SV = saline/vehicle, ST = saline/THC, DV = SCH23390/vehicle, DT = 

SCH23390/THC 
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 FosB/ΔFosB positive nuclei co-localize with dynorphin-ir in striatal cells 

 Results showing that D1R antagonists block THC-mediated ∆FosB induction suggest that 

THC induces ∆FosB in D1R positive MSNs.  However, anatomical data to support this 

conclusion are lacking.  Therefore, dual immunohistochemistry was performed using antibodies 

that recognize FosB/ΔFosB and preprodynorphin, which is co-localized with D1Rs in MSNs of 

the direct pathway. Dynorphin was visualized in green and FosB/∆FosB-ir was visualized in red 

(Figure 3.5 and 3.6).  DAPI (blue) was used to identify cell nuclei. Dynorphin diffusely stained 

both the dorsal and ventral striatum and appeared to be localized in striatal cells.  This was 

confirmed by DAPI staining, which identified cell nuclei of dynorphin-ir cells.  FosB/ΔFosB-ir 

appeared to be localized in cell nuclei, which was confirmed by DAPI staining (Figure 3.5 A and 

E and Figure 3.6 A and E). FosB/ΔFosB-ir positive cells were seen in brains from vehicle-treated 

mice in both the caudate-putamen (Figure 3.5 B) and nucleus accumbens (Figure 3.6 B). Cell 

counting showed that approximately half of DAPI-positive cells contained both FosB/ΔFosB-ir 

and dynorphin-ir in both the caudate-putamen (49% ± 3%, Figure 3.5 D and I) and nucleus 

accumbens (47% ± 2%, Figure 3.6 D and I). The number of dual FosB/ΔFosB-ir and dynorphin-

ir cells was significantly greater than the number of cells that only expressed FosB/ΔFosB-ir 

(26% ± 2% in caudate-putamen and 31% ± 2% in nucleus accumbens (p < 0.001).  Following 

repeated THC administration, the percent of DAPI positive cells that contained both 

FosB/ΔFosB-ir and dynorphin-ir did not differ from vehicle-treated mice (55% ± 2% and 52% ± 

1%, caudate-putamen (Figure 3.5 G and I) and nucleus accumbens (Figure 3.6 G and I), 

respectively).  The number of cells positive for FosB/ΔFosB-ir and dynorphin-ir cells was 

significantly greater than the number of FosB/ΔFosB-ir cells (26% ± 2% in caudate-putamen and 

25% ± 4% in nucleus accumbens (p < 0.001)).  In both regions, ~75%-85% of DAPI-positive 
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cells co-localized with FosB/ΔFosB-ir, which would suggest that FosB/ΔFosB-ir is 

predominantly expressed in MSNs, which represent ~95% of neurons of striatum.   
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Figure 3.5  Representative images (40X) showing FosB/∆FosB-ir (red), Dynorphin (green) and 

DAPI (blue) in the caudate-putamen of mice that received repeated vehicle (top row) or THC 

(bottom row) treatment.  In both vehicle (B) and THC (F) treated mice, FosB/ΔFosB-ir was 

localized to the nucleus, which was visualized with DAPI (A and E), while dynorphin-ir (C, 

vehicle; G, THC) was localized to the cell body. (D and H)  The majority of FosB/ΔFosB-ir cells 

were also positive for dynorphin-ir in both vehicle- and THC-treated mice (I).  The number of 

cells positive for either FosB/ΔFosB-ir and dynorphin-ir (white bar) or FosB/ΔFosB-ir (black 

bar) cells as a percentage of DAPI-positive cells, were compared and results determined that a 

significantly higher percentage of cells contained both FosB/ΔFosB-ir and dynorphin-ir in both 

vehicle- and THC-treated mice (p < 0.001).  One-way ANOVAs were performed with 

Bonferroni post-hoc test.  *** p < 0.001 compared to FosB/ΔFosB-ir alone in vehicle-treated.  

### p < 0.001 compared to FosB/ΔFosB-ir alone in THC-treated. 
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Figure 3.6  Representative images (40X) showing FosB/∆FosB-ir (red), Dynorphin (green) and 

DAPI (blue) in the nucleus accumbens of mice that received repeated vehicle (top row) or THC 

(bottom row) treatment.  In both vehicle (B) and THC (F) treated mice, FosB/ΔFosB-ir was 

localized to the nucleus, which was visualized with DAPI (A and E), while dynorphin-ir (C, 

vehicle; G, THC) was localized to the cell body. (D and H) The majority of cells positive for 

FosB/ΔFosB-ir were also positive for dynorphin-ir in both vehicle- and THC-treated mice (I). 

The number of cells positive for either FosB/ΔFosB-ir and dynorphin-ir (white bar) or 

FosB/ΔFosB-ir (black bar) cells as a percentage of DAPI-positive cells, were compared and 

results determined that a significantly higher percentage of cells contained both FosB/ΔFosB-ir 

and dynorphin-ir in both vehicle- and THC-treated mice (p < 0.001).  One-way ANOVAs were 

performed with Bonferroni post-hoc test.  *** p < 0.001 compared to FosB/ΔFosB-ir alone in 

vehicle-treated.  ### p < 0.001 compared to FosB/ΔFosB-ir alone in THC-treated. 
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Acute, but not repeated, THC-mediated FosB induction is abolished in DARPP-32 knockout mice 

DARPP-32 knockout and littermate wild-type mice were treated for 13.5 days with THC 

or vehicle and then assessed for in vivo measures by administering a single injection of THC (70 

mg/kg) or vehicle. Therefore, mice of each genotype were treated as follows: repeated vehicle + 

acute vehicle (VEH-VEH group), repeated vehicle + acute THC (VEH-THC) and repeated THC 

+ acute THC (70 mg/kg) (THC-THC).  Mice were first tested in the in vivo measures, and then 

brains from the six groups (VEH-VEH, VEH-THC, THC-THC for DARPP-32 knockout and 

wild-type mice) were collected to measure ∆FosB-ir.  In the caudate-putamen, A 3 X 2- way 

ANOVA (treatment X genotype) determined a significant main effect of both treatment (F 2, 36 = 

68.58 p < 0.0001) and an interaction (F 2,36 = 12.40, p < 0.001) (Figure 3.7 A). ΔFosB expression 

did not significantly differ between VEH-VEH-treated wild type and DARPP-32 knockout mice 

in the caudate-putamen.  An acute injection of THC in repeated vehicle-treated mice (VEH-

THC) significantly increased ΔFosB expression in wild type mice (32% ± 4%, p < 0.001, relative 

to VEH-VEH wild type mice, Figure 3.7 A), but not in DARPP-32 knockout mice (4% ± 5%,  

relative to VEH-VEH wild type mice, Figure 3.7 A).  Acute THC-induced ΔFosB-ir in wild type 

mice also significantly differed from ∆FosB-ir in DARPP-32 knockout mice (p < 0.001, Figure 

3.7 A).  Following repeated THC administration, ΔFosB expression was significantly increased 

in both wild type (50% ± 5%, p < 0.001, relative to VEH-VEH wild type mice) and DARPP-32 

knockout (60% ± 6%, p < 0.001, relative to VEH-VEH wild type mice) mice.  The level of 

∆FosB-ir in DARPP-32 knockout mice was also significantly different from DARPP-32 

knockout mice that had received only vehicle (VEH-VEH) (p < 0.001, Figure 3.7 A). ΔFosB 
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expression did not significantly differ between wild type and DARPP-32 knockout mice that 

received repeated THC treatment (THC-THC).   

In the nucleus accumbens, a 3 X 2- way ANOVA (treatment X genotype) determined a 

significant main effect of both treatment (F 2, 36 = 13.71 p < 0.0001) and genotype (F 1,36 = 12.04, 

p < 0.05) (Figure 3.7 B). ΔFosB expression did not significantly differ between wild type and 

DARPP-32 knockout mice that received only vehicle (VEH-VEH).  There was a significant 

difference in ∆FosB-ir between vehicle-treated wild type and DARPP-32 knockout mice that 

received an acute injection of THC (VEH-THC) (26 % ± 10% versus -15% ± 11%, p < 0.05, 

relative to VEH-VEH wild type mice, Figure 3.7 B). There was a significant increase in ΔFosB 

expression following repeated THC administration in wild type (34% ± 7%, p < 0.05, Figure 3.7 

B), but not DARPP-32 knockout (16% ± 16%, Figure 3.7 B) mice compared to wild type 

vehicle-treated mice. ΔFosB expression was not significantly different between wild type and 

DARPP-32 knockout mice that received repeated THC treatment (THC-THC).  These results 

show that deletion of DARPP-32 blocked ∆FosB induction produced by an acute injection of 

THC, but does not inhibit ∆FosB induction after repeated THC treatment in the caudate-

putamen. A similar pattern was found in the nucleus accumbens; however induction of ∆FosB by 

repeated THC was not significant in this region. 
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Figure 3.7 Genetic deletion of DARPP-32 attenuated induction of ΔFosB following a single 

injection of THC in the caudate-putamen and nucleus accumbens and attenuated induction of 

ΔFosB following repeated THC administration in nucleus accumbens.  Graphs show ΔFosB-ir 

expressed as % VEH-VEH wild type mice ± SEM in A) nucleus accumbens and B) caudate-

putamen.  3 X 2-way ANOVA was performed with Bonferroni post-hoc test, * p < 0.05 and *** 

p < 0.001 compared to VEH-VEH wild type control.  ^ p < 0.05 and ^^^ p < 0.001 compared to 

VEH-THC wild type.    ### p < 0.001 compared to VEH-VEH knockout. 
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DARPP-32 knockout mice exhibit enhanced THC-mediated locomotor suppression and greater 

tolerance to this effect and exhibit less THC-mediated hyperreflexia following repeated THC 

administration 

DARPP-32 knockout mice and wild type littermate controls that received repeated THC 

or vehicle were assessed for THC-mediated locomotor suppression, hypothermia, 

antinociception, catalepsy and hyperreflexia.  A separate group of mice that received repeated 

vehicle were challenged with vehicle to verify that there was no effect of multiple assessments 

on these measures (data not shown). , Acute THC administration produced significantly greater 

locomotor suppression in vehicle-treated DARPP-32 knockout mice as compared to wild-type 

mice (206 ± 13 vs. 258 ± 10 seconds immobile, wild type and DARPP-32 knockout mice, 

respectively, p < 0.05) (Figure 3.8 A). There was no significant difference in THC-mediated 

locomotor suppression between vehicle and THC-treated wild type mice (Figure 3.8 A).  

However, significantly less THC-mediated locomotor suppression was found in DARPP-32 

knockout mice compared to their respective vehicle-treated control (258 ± 10 vs. 135 ± 21 

seconds immobile, vehicle and THC treated, respectively, p < 0.001, Figure 3.8 A), indicating 

that tolerance had developed to this effect.  DARPP-32 knockout mice also exhibited 

significantly less locomotor suppression than wild-type mice following repeated THC 

administration (187 ± 15 vs. 135 ± 21 seconds immobile, wild type and DARPP-32 knockout 

mice respectively, p < 0.05, Figure 3.8 A). 

For the measure of catalepsy, comparisons were made at the 180 minute time point 

because mice also exhibited hyperreflexia at earlier time points (Figure 3.8 E).  There was no 

significant difference between vehicle-treated wild type and DARPP-32 knockout mice because 

both genotypes remained immobile on the bar for a similar period of time after THC 
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administration (54 ± 2 versus 49 ± 4 seconds immobile, wild type and DARPP-32 knockout mice 

respectively, Figure 3.8 B). Following repeated THC administration, there was also no 

significant difference between wild type or DARPP-32 knockout mice (49 ± 3 versus 41 ± 4, 

seconds immobile, wild type and DARPP-32 knockout respectively, Figure 3.8 B).   Time spent 

immobile on the bar did not differ between repeated vehicle-or THC-treated mice for either 

genotype, suggesting that tolerance did not develop for this measure.  Interestingly, there was a 

significant difference in the percentage of mice that exhibited hyperreflexia. A significantly 

higher percentage of THC-treated wild type mice exhibited hyperreflexia compared to either 

vehicle-treated wild type mice or repeated THC-treated DARPP-32 knockout mice (Figure 3.8 

E).  At 30 minutes, 87.5% of wild type mice that received repeated THC administration exhibited 

hyperreflexia, whereas 25% of either THC-treated DARPP-32 knockout mice or vehicle-treated 

wild type mice exhibited hyperreflexia.  The percentage of repeated THC-treated wild type mice 

that exhibited hyperreflexia was also greater at the 60 minute time point compared to wild type 

mice that received repeated vehicle and greater at the 60 and 120 minute time points compared to 

DARPP-32 knockout mice that received repeated THC (Figure 3.8 E).  

Both vehicle-treated wild type and DARPP-32 knockout mice exhibited antinociception 

following acute THC administration and the time-course of the effect was similar between 

genotypes (Figure 3.8 C). Antinociception, measured as % MPE, was significantly decreased at 

all time points in THC- compared to vehicle-treated wild type and DARPP-32 knockout mice 

(Figure 3.8 C).  Antinociception was not significantly different between repeated THC-treated 

wild type and DARPP-32 knockout mice over the time period examined (Figure 3.8 C). Vehicle-

treated wild type and knockout mice both exhibited hypothermia following acute THC 

administration (Figure 3.8 D).  Vehicle-treated wild type and DARPP-32 knockout mice had 
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similar body temperatures at 30 minutes (32.8°C ± 0.5°C versus 32.7°C ± 0.6°C, wild type and 

DARPP-32 knockout mice, respectively) and temperature remained stable for the remaining 120 

minutes, suggesting a similar time course for hypothermia between genotypes. Body temperature 

was significantly higher in THC-treated mice compared to the respective vehicle-treated mice of 

each genotype (Figure 3.8 D).  Body temperature did not significantly differ between repeated 

THC treated wild type and DARPP-32 knockout mice 30 minutes after THC administration 

(37.1°C ± 0.2°C vs. 32.0°C ± 0.3°C, wild type and DARPP-32 knockout, respectively) and 

values remained stable for both wild type and DARPP-32 knockout mice throughout testing 

(Figure 3.8 D). 
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Figure 3.8 DARPP-32 knockout mice exhibited greater acute THC-mediated locomotor 

suppression and tolerance to THC-mediated locomotor suppression following repeated THC 

administration.  Graphs show differences between wild type and DARPP-32 knockout mice 

following repeated THC administration for A) locomotor suppression, B) catalepsy, C) 

antinociception, D) hypothermia and E) hyperreflexia.  For locomotor suppression data are 

presented as time immobile and catalepsy as time immobile on a bar in seconds ± SEM.  

Antinociception is presented as % MPE ((test latency - baseline)/(total length of test)]  X 100) ± 
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SEM.  Hypothermia presented as difference from baseline ± SEM. Hyperreflexia is represented 

as percent mice exhibiting hyperreflexia.  For antinociception and hypothermia repeated 

measures ANOVA were performed with Bonferroni post-hoc test *** p < 0.001 compared to 

repeated vehicle treated wild type mice and ^^^ p < 0.001 compared to repeated vehicle treated 

DARPP-32 knockout mice.  For locomotor suppression and catalepsy, two-way ANOVA was 

performed with Bonferroni post-hoc test * p < 0.05 compared to repeated vehicle treated wild 

type mice, ^^^ p < 0.001 compared to repeated THC-treated DARPP-32 knockout mice and # p 

< 0.05 compared to repeated THC-treated wild type mice.  For hyperreflexia, z-tests with 

Bonferroni correction were performed, * p < 0.05 compared to repeated vehicle-treated wild type 

mice and # p < 0.05 compared to repeated THC-treated DARPP-32 knockout mice.  
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3.4 Discussion 

The present study was conducted to investigate the role of D1Rs and DARPP-32 in THC-

mediated induction of ∆FosB and to determine the role of DARPP-32 in THC-mediated motor 

responses in drug naïve and THC-treated mice. A pharmacological approach was used by 

administering D1R-selective antagonists, SCH23390 or SCH39166, prior to treatment with THC 

during the 6.5 days of treatment, and then measuring ∆FosB induction.  Administration of either 

SCH23390 or SCH39166 blocked THC-mediated induction of ∆FosB in the prefrontal cortex, 

striatum, and amygdala, indicating that D1Rs are required for THC-mediated effects on 

transcription via ∆FosB in these regions.  Neuroanatomical studies revealed that a majority of 

FosB/∆FosB positive cells in the striatum were also dynorphin positive, suggesting that ∆FosB-ir 

is increased mainly in D1R-containing MSNs of the direct pathway.  Studies in DARPP-32 

knockout mice showed that deletion of DARPP-32 attenuated the effect of acute, but not 

repeated, THC on ∆FosB induction.  Moreover, deletion of DARPP-32 enhanced both acute 

THC-mediated locomotor suppression and tolerance to this effect. Overall, these results support 

a role for D1R-mediated signaling in the effects of acute and repeated THC administration.    

We previously reported that THC-mediated ΔFosB induction in the caudate-putamen and 

nucleus accumbens was abolished in CB1R knockout mice, demonstrating that THC induces 

∆FosB in a CB1R-dependent manner (Chapter 1). Neuroanatomical studies in which striatal 

sections were dual stained for CB1Rs and ∆FosB showed that CB1R-ir puncta surrounded 

ΔFosB-ir cells and also that CB1R-ir and FosB/ΔFosB-ir were co-localized in some cells 

(Chapter 1).  These findings suggested that activation of CB1Rs by THC might increase ΔFosB 

expression both directly and via trans-synaptic events. Cannabinoids acting at CB1Rs increase 

the activity of dopaminergic neurons in the substantia nigra and ventral tegmental area, leading 
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to increased dopamine release in the caudate-putamen and nucleus accumbens (Cheer et al., 

2003; Riegel and Lupica, 2004; Wu and French, 2000). Cannabinoids can also directly modulate 

dopamine release at nerve terminals within the striatum (Cheer et al., 2004). Therefore, it is 

likely that THC-mediated dopamine release activates D1Rs in the striatum.  The results of the 

current study showed that THC-mediated ΔFosB induction in the striatum, as well as in the 

prefrontal cortex and amygdala, required D1R activation.  This finding extends our previous 

study by showing that D1R antagonists also blocked ΔFosB induction in the prefrontal cortex and 

amygdala, which has not been shown for other drugs of abuse.  Morphine-mediated induction of 

ΔFosB was found to be D1R-independent in frontal cortex (Muller and Unterwald, 2005), 

supporting the idea that D1Rs are involved in ∆FosB induction in non-striatal regions.  

Cannabinoids enhance dopamine release in the prefrontal cortex and amygdala (Polissidis et al., 

2010; Polissidis et al., 2013), suggesting that CB1R-mediated dopamine release could be a 

common mechanism of D1R-mediated induction of ΔFosB in all of these forebrain regions.    

CB1Rs are located on both D1R/dynorphin and D2R/enkephalin MSN populations in the 

striatum (Hohmann and Herkenham, 2000), but pharmacological results indicate that THC 

induced ΔFosB primarily in D1R/dynorphin MSNs in both the caudate-putamen and nucleus 

accumbens.  This finding agrees with previous findings that acute THC-mediated increases in 

Fos-immunoreactive cells in the striatum were attenuated by administration of D1R, but not D2R, 

antagonist (Miyamoto et al., 1996).   Overexpression of ΔFosB in D1R-positive MSNs increases 

the rewarding properties of other drugs of abuse, including cocaine (Kelz et al., 1999) 

(Muschamp et al., 2012), morphine (Zachariou et al., 2006a) and naturally rewarding behaviors 

(Pitchers et al., 2010; Werme et al., 2002).  These findings would suggest that THC-mediated 

motivated behaviors might also be enhanced following ∆FosB induction. THC-mediated reward 
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is difficult to determine in preclinical models in rodents, but has been shown in squirrel monkeys 

(Justinova et al., 2003; Tanda et al., 2000). THC-mediated ∆FosB induction might also enhance 

the effects of other psychoactive drugs.  For example, nicotine self-administration (Panlilio et al., 

2013) and cocaine-induced locomotor activity (Dow-Edwards and Izenwasser, 2012) were 

enhanced in mice that were previously exposed to THC. The current data would suggest that 

THC-mediated ΔFosB induction in D1R/dynorphin MSNs is a possible mechanism underlying 

these observations.  However, pre-exposure to THC does not increase the likelihood of self-

administration of heroin (Solinas et al., 2004) or cocaine (Panlilio et al., 2007), so it is not clear 

whether the rewarding effects of all drugs of abuse are enhanced after pre-exposure to THC. 

Previous studies have shown that administration of D1R antagonists or genetic deletion of 

D1Rs attenuated the induction of ∆FosB and other Fos family members produced by morphine or 

cocaine (Muller and Unterwald, 2005; Nye et al., 1995; Zhang et al., 2002).  Moreover, 

psychomotorstimulants like cocaine and methylphenidate also induced ∆FosB in D1R-positive 

striatal neurons (Hostetler and Bales, 2012; Kim et al., 2009; Nye et al., 1995).  The present 

findings with THC support a role for D1R-mediated ∆FosB induction with drugs that cause 

dopamine release within striatum. Previous studies in which SCH23390 was administered did 

not report a significant increase in ΔFosB induction with SCH23390 alone (Muller and 

Unterwald, 2005; Nye et al., 1995; Pitchers et al., 2010).  This might be due to methodological 

differences because we pretreated twice daily, every day, whereas other studies used once-daily 

or intermittent drug administration.  It is also possible that non-D1R activity of SCH23390 

induced ∆FosB because this effect was seen only in the nucleus accumbens and was not seen 

after treatment with SCH39166.  SCH23390 is also a high affinity agonist for 5HT1c (Taylor et 

al., 1991) and 5HT2c (Millan et al., 2001) receptors.  For example, SCH23390 blocked the 
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sensitization effects of 3,4-methylenedioxymethamphetamine (MDMA) via agonist activity at 

5HT2c receptors and not via D1R antagonist properties (Ramos et al., 2005).  5HT2c receptors are 

located on dopaminergic neurons of the ventral tegmental area that project to the nucleus 

accumbens (Bubar et al., 2011).  SCH39166 is a more selective D1R antagonist and has much 

lower affinity for D2R and 5HT receptors (Alburges et al., 1992; Duffy et al., 2000; Tice et al., 

1994; Wamsley et al., 1991).  This might explain why SCH39166 did not significantly increase 

ΔFosB in the nucleus accumbens like SCH23390.  The finding that SCH39166 in combination 

with THC increased ΔFosB expression above levels in control mice suggests that other receptors 

could be involved in the THC-mediated induction of ΔFosB in this region.  A study that 

investigated THC-mediated ERK phosphorylation showed that antagonism of D2Rs and NMDA 

receptors reduce ERK phosphorylation after acute THC administration, but to a lesser degree 

than D1R antagonism (Valjent et al., 2001). Our data show that antagonism of D1Rs blocked 

THC-mediated ∆FosB induction, but also suggest that activation of 5HT1/2c receptors might 

cause induction of ΔFosB in the nucleus accumbens. 

Antagonist studies showed that D1R activation was necessary for THC-mediated 

induction of ΔFosB, but the signaling pathway(s) that mediate this effect has not been identified.  

D1R-mediated activation of PKA leads to phosphorylation of DARPP-32 on threonine 34, which 

allows DARPP-32 to inhibit protein phosphatase-1 (Desdouits et al., 1995; Hemmings et al., 

1984a; Kwon et al., 1997), thereby enhances the effects of PKA.   Genetic deletion of DARPP-

32 or point mutation of DARPP-32 at the threonine 34 site attenuates cocaine-mediated 

induction of ΔFosB in the nucleus accumbens but not caudate-putamen (Hiroi et al., 1999; 

Zachariou et al., 2006b).  Results showed that deletion of DARPP-32 abolished acute THC-

mediated ΔFosB induction in both the caudate-putamen and nucleus accumbens. ΔFosB is not 
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significantly induced following acute administration of morphine or psychostimulants (Grueter et 

al., 2013), but the effect of THC might be due to the large dose of THC administered (70 mg/kg) 

and/or the long duration of action of THC (Ashton, 2001; Whitlow et al., 2002).  This difference 

in the pharmacokinetic properties of THC could have produced long-lasting activation of CB1Rs 

and perpetuated increased expression of ΔFosB because brains were collected 24 hours after 

injection.  Recent studies have suggested that ΔFosB might affect locomotor activity and reward-

related behaviors through changes in AMPA and NMDA receptors at earlier time points than 

previously hypothesized (Grueter et al., 2013).  Following repeated THC administration, wild 

type mice exhibited significant ΔFosB induction in nucleus accumbens, whereas this effect was 

abolished in DARPP-32 knockout mice.  In contrast, THC-mediated ΔFosB induction was 

similar in the caudate-putamen of wild type and DARPP-32 knockout mice.  These results agree 

with previous results showing that repeated cocaine administration in DARPP-32 knockout mice 

significantly increased ΔFosB expression in the caudate-putamen, but not nucleus accumbens 

(Hiroi et al., 1999).  The finding that DARPP-32 primarily modulates acute THC- but not 

repeated THC-, mediated induction of ΔFosB suggests the possibility that epigenetic changes at 

the FosB promoter might make DARPP-32 unnecessary for further ΔFosB induction.  In fact, 

enhanced cocaine-mediated induction of ΔFosB in cocaine-experienced animals did not depend 

on changes in upstream signaling factors, like ERK, which are also known to mediate ΔFosB 

induction (Damez-Werno et al., 2012).  DARPP-32 was shown to be necessary for acute THC-

mediated ERK phosphorylation in the nucleus accumbens shell (Valjent et al., 2005).  ERK 

phosphorylation might mediate acute ΔFosB induction, but this pathway might not be necessary 

for ΔFosB induction after repeated THC administration.  Mice with genetic deletion of Ras-

GRF1, which have reduced ERK phosphorylation following D1R activation, also exhibit 
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reductions in FosB/ΔFosB immunopositive cells following repeated cocaine administration in 

the striatum (Fasano et al., 2009).  However, ERK phosphorylation was not completely blocked 

in Ras-GRF1 knockout mice, providing further evidence that ERK might not be necessary for 

ΔFosB induction following repeated drug administration.  

We have previously shown an inverse correlation between ΔFosB induction and CB1R 

desensitization (Chapter 1) and others have demonstrated that inhibition of PKA reduced 

tolerance to THC-mediated in vivo effects (Bass et al., 2004).  Therefore, studies were performed 

in DARPP-32 knockout mice to determine the role that this protein might play in the 

development of tolerance to THC-mediated responses.  Previous studies determined that mice 

with a mutation of DARPP-32 at the threonine 34 site that prevented its conversion to a PP1 

inhibitor exhibited attenuated catalepsy following acute treatment with the cannabinoid agonist, 

CP55,940 (Andersson et al., 2005).  Our results did not find a similar attenuation of cannabinoid-

mediated catalepsy with THC.  Methodological differences, as well as differences in the 

cannabinoid agonist administered might explain these conflicting results.  The previous study 

used the high efficacy partial agonist CP55,940 and tested catalepsy using a tilted grid, whereas 

we used the partial agonist, THC, and the bar test to measure catalepsy.  Additionally, the 

previous study used mice with a mutation at the threonine 34 site of DARPP-32, whereas mice in 

the current study had genetic deletion of DARPP-32.  Mice also exhibited hyperreflexia until the 

third hour time point.  At this time point, the previous study also found no difference in 

catalepsy. The previous authors did not report hyperreflexia, even though this response has 

previously been reported after CP55,940 treatment (Patel and Hillard, 2001).  Following acute 

THC administration, DARPP-32 knockout mice did exhibit greater locomotor suppression. 

Furthermore, following repeated THC administration, DARPP-32 knockout mice developed 
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tolerance to the locomotor suppressing effects of THC whereas wild type mice did not.  The lack 

of tolerance to the locomotor suppressing effects of THC in wild type mice was probably due to 

the low dose of THC administered in this study because we previously reported that mice treated 

with this paradigm did not exhibit desensitization in striatal regions (Chapter 1) and a one week 

treatment with this paradigm did not produce tolerance to this effect (McKinney et al., 2008).  

There were no differences in the development of tolerance to THC-mediated hypothermia or 

antinociception, which agrees with the expression profile of DARPP-32 because it is expressed 

mainly in the striatum and not in the hypothalamus or midbrain (Perez and Lewis, 1992).  There 

was, however, a difference in the percent of mice that exhibited hyperreflexia.  Vehicle-treated 

wild type and DARPP-32 knockout mice and THC-treated DARPP-32 knockout mice exhibited 

similar percentages of hyperreflexia, whereas the percentage of wild type mice that exhibited 

hyperreflexia following repeated THC administration was significantly higher.  This is an 

interesting finding because hyperreflexia has been associated with activation of CB1Rs in the 

cerebellum and dopamine agonists do not attenuate this effect (Patel and Hillard, 2001).  The 

cerebellum does not contain dopaminergic projections, but DARPP-32 has been detected in this 

region (Schalling et al., 1990).  Future studies are necessary to determine the role that DARPP-

32 may play in mediating this effect and whether it is cerebellar-mediated. 

These studies demonstrate a neurochemical commonality between THC and other drugs 

of abuse, such as cocaine and morphine, where ΔFosB induction is blocked by antagonism of 

D1Rs and ΔFosB induction is primarily restricted to the D1R/dynorphin MSNs of striatum.  This 

similarity in the action of these drugs of abuse suggests that future therapeutic targets targeting 

these systems could be effective in treating polydrug use.  We also found that antagonism of 

D1Rs blocks THC-mediated induction of ΔFosB in the prefrontal cortex, where changes in this 
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region are thought to contribute to the loss of control of drug intake in addicts (Goldstein and 

Volkow, 2011), and the amygdala, which is proposed to mediate drug reinstatement (Stamatakis 

et al., 2013).  In the striatum, DARPP-32 appeared to mediate acute induction of ΔFosB by THC 

while it has a diminished role in mediating ΔFosB induction following repeated THC 

administration.  This suggests that different mechanisms are responsible for the acute induction 

of ΔFosB compared to induction of ΔFosB following repeated THC administration in striatum.  

DARPP-32 also plays a role in reducing tolerance to THC-mediated locomotor suppression, a 

behavior that is known to be resistant to tolerance in humans (D'Souza et al., 2008), suggesting 

that this protein could be targeted to enhance tolerance to this side-effect. 
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Chapter 4: Brain region-dependent differences in ΔFosB signaling following THC-

challenge in THC-experienced versus drug naïve mice 

4.1 Introduction 

Long-term drug use produces physiological changes that are not present upon initial drug 

use.  Some of these changes are due to the induction of transcription factors that can control 

multiple genes (Lazenka et al., 2013), thus altering signaling.  One transcription factor thought to 

mediate these physiological changes is ΔFosB, a stable splice variant of FosB that is typically 

induced after repeated drug administration.  Recent studies have determined that repeated 

administration of THC, the main psychoactive constituent of marijuana, induces ΔFosB in the 

prefrontal cortex, caudate-putamen, nucleus accumbens, amygdala and cerebellum (Perrotti et 

al., 2008) (Chapter 1).  ΔFosB has been implicated in mediating the rewarding effects of drugs of 

abuse through transcriptional regulation of specific target genes (McClung and Nestler, 2003; 

Perrotti et al., 2008).   

Since ΔFosB has a long half-life in neurons and is stable for weeks (Ulery-Reynolds et 

al., 2009; Ulery et al., 2006), it is proposed that it can mediate the long-term changes associated 

with drugs of abuse (Nestler et al., 2001).  Studies in mice that received repeated cocaine 

administration or had genetic overexpression of ΔFosB have found that ΔFosB regulates the 

expression of several target genes including cyclin dependent kinase 5 (CDK5), the neuronal-

specific activator of CDK5 (p35) and calmodulin-dependent protein kinase II (CAMKII) (Bibb et 

al., 2001a; McClung and Nestler, 2003).  The expression of some of these proteins has been 

examined in humans, where post-mortem studies found that both ΔFosB and CAMKII were 

increased in the nucleus accumbens of cocaine users (Robison et al., 2013).   
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The long-term changes that occur following prolonged drug include increased dendritic 

spine formation and other cytoskeletal-dependent changes that are mediated by CDK5 (Dhavan 

and Tsai, 2001; Norrholm et al., 2003), and regulation by CDK5 is dependent on its coactivators: 

p35 and p39 (Ko et al., 2001).  CDK5 produces cytoskeletal changes partly through direct 

phosphorylation of the microtubule associated protein, tau (Baumann et al., 1993), but also 

indirectly through phosphorylation of glycogen synthase kinase-3β (GSK3β) (Morfini et al., 

2004), which also phosphorylates tau.  CDK5 can also alter the function of the dopamine- and 

cAMP-regulated neuronal phosphoprotein of 32 kDA (DARPP-32) in striatal neurons by 

phosphorylating DARPP-32 at threonine 75 (Bibb et al., 1999).  Phosphorylation at this site 

attenuates PKA activity and reduces dopamine type 1 receptor (D1R) signaling (Bibb et al., 

2001b).  In contrast to repeated cocaine administration, acute cocaine increases phosphorylation 

of DARPP-32 at threonine 34 (Zachariou et al., 2006b), which enhances PKA activity.  Acute 

administration of THC also increases phosphorylation of DARPP-32 at threonine 34 (Borgkvist 

et al., 2008), although levels return to baseline within one hour.        

Finally, epigenetic changes play a role in long-term adaptation to prolonged drug 

exposure, through either enhancement of repression of gene promoters.  Epigenetic changes that 

occur with repeated cocaine administration include changes at the DNA level through either 

methylation/demethylation of the C5 position of cytosines located in CpG islands or 

acetylation/deacetylation and methylation at histones at the promoters of genes (Anier et al., 

2010; Nestler, 2013; Robison and Nestler, 2011).  The following studies investigated whether 

there are brain region-dependent differences in the regulation of these signaling proteins 

following either acute or repeated THC administration.  Further, it was determined whether THC 
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administration in mice with prior THC experience regulates these proteins differently than THC 

in drug naïve mice. 

4.2 Materials and Methods  

Materials 

THC was received from the same source as in Chapter 1.  The antibodies used are listed 

in Table 4.1.  The same secondary antibodies were used as reported in Chapter 1.  For RT-qPCR 

studies, the High Capacity cDNA Reverse Transcription Kit was purchased from Applied 

Biosystems Inc. (Foster City, CA) and the 2x QuantiFast
®
 SYBR

®
 Green PCR kit was purchased 

from Qiagen (Valencia, CA).    All other reagent grade chemicals were obtained from Sigma 

Chemical Co. or Fisher Scientific. 

 

TABLE 4.1 

List of antibodies used for immunoblot studies 

Antibody (animal) Company Dilution 

α-tubulin (mouse, ab7291) Abcam 1:20000 

FosB (rabbit, sc-7203) Santa Cruz Biotechnology 1:500 

CDK5 (rabbit, sc-173) Santa Cruz Biotechnology 1:2000 

p35/p25 (rabbit) Cell Signaling Technology 1:1000 

Total ERK1 (rabbit) Cell Signaling Technology 1:2000 

pERK1 (mouse) Cell Signaling Technology 1:2000 

DARPP-32 (mouse) Santa Cruz Biotechnology 1:2000 

pT34DARPP-32 (rabbit) Cell Signaling Technology 1:1000 

pT75DARPP-32 (rabbit) Cell Signaling Technology 1:1000 

pGSK3β(mouse) Cell Signaling Technology 1:1000 

pTau (AT8, mouse) Pierce Scientific 1:500 

 

Drug Treatments  

Male C57Bl/6J mice (Jackson Laboratories, Indianapolis, IN) 8 weeks old were used for 

all treatments. Mice were housed four to six per cage and maintained on a 12-hr light/dark cycle 
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in a temperature controlled environment (20-22°C) with food and water available ad libitum. 

THC (10 mg/kg) was dissolved in a 1:1:18 solution of ethanol, emulphor and saline (vehicle). 

Mice were injected subcutaneously with either vehicle (VEH) or THC at 07:00 and 16:00 h for 

13 days.  On the morning of day 14, both vehicle- and THC-treated groups of mice were divided 

in half and received either vehicle or 10 mg/kg THC injection to produce 4 groups: VEH-VEH, 

VEH-THC, THC-VEH and THC-THC.  Brains were extracted 45 minutes after the final 

injection and dissected into appropriate regions for immunoblots (n = 8 mice per group) or RT-

qPCR (n= 5-6 mice per group).  The 45 minute time point was chosen because DARPP-32 

phosphorylation at threonine 34 returns to baseline within one hour (Borgkvist et al., 2008) and 

FosB/ΔFosB mRNA is maximally induced by this time point (Damez-Werno et al., 2012).  All 

experiments were performed with the approval of the Institutional Animal Care and Use 

Committee at Virginia Commonwealth University in accordance with the National Institutes of 

Health guide for the care and use of Laboratory animals 7
th

 edition.  

 Dissections  

Regions of interest were dissected from fresh whole brains as described in Chapter 1 for 

immunoblots.  For the globus pallidus, a cut was made directly anterior to the optic chiasm and 

directly posterior to the optic chiasm.  The globus pallidus was isolated by removing the tissue 

bordered laterally by the caudate-putamen and internal capsule and dorsally by the ventral 

pallidum.  The substantia nigra was dissected by making a first cut rostral to the mammillary 

bodies and a second cut rostral to the cerebellar peduncles, and then collecting tissue from the 

ventral aspect of the section located lateral to the mammillary bodies and ventral tegmental area 

and parabrachial pigmented nucleus. For RT-qPCR, regions of interest were dissected as 

described in Chapter 1.  
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Immunoblots 

Immunoblots were performed as described in Chapter 1. 

Real time quantitative polymerase chain reaction (RT-qPCR) 

RNA was extracted from brain tissue immersed in Trizol
®
 and were homogenized using a 

Powergen 125 homogenizer (Fischer Scientific).  RNA (5 µg) was then converted into cDNA 

using a High Capacity cDNA Reverse Transcription Kit.  cDNA (10 ng) was then added to 0.2 

ml wells containing a master mix from the 2x QuantiFast
®
 SYBR

®
 Green PCR kit and specific 

primers at a final concentration of 0.4 µM and water was added to a final volume of 25 

µl.  Additional wells with no cDNA added served as no template controls (NTC) for each primer 

set.  Samples were placed in a BioRad real-time thermocycler programed to a 2-step cycling 

protocol, followed by a melt curve step at the end of the reaction.  Cycle threshold (Ct) values 

were initially normalized to ΔCt values by subtracting sample Ct values from β-actin Ct 

values.  Data were further converted to ΔΔCt values and final mRNA quantification was 

calculated using the following equation: 2^(- ΔΔCt) x 100 = % mRNA expression.  Primers 

described previously (Alibhai et al., 2007) for FosB and ΔFosB were used: FosB: Forward 5’-

GTGAGAGATTTGCCAGGGTC-3’ and Reverse 5’-AGAGAGAAGCCGTCAGGTTG-3’, and 

ΔFosB: Forward 5’-AGGCAGAGCTGGAGTCGGAGAT-3’ and Reverse 5’ 

GCCCGAGGACTTGAACTTCACTCG-3’.  Primers described previously for CDK5 (Hawasli 

et al., 2007) were used: Forward 5'-GGCTAAAAACCGGGAAACTC-3' and Reverse 5'-

CCATTGCAGCTGTCGAAATA-3’ A previously described β-actin primer (Grimaldi and 

Capasso, 2012) was also used: Forward 5’-TGTTACCAACTGGGACGA-3’ and Reverse 

5’GTCTCAAACATGATCTGGGTC-3’. 
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Data Analysis 

For all experiments, data were analyzed with Prism® version X (GraphPad Software, San 

Diego, CA).  For immunoblots and RT-qPCR, one-way ANOVAs were performed with 

Bonferroni post-hoc test.  Significance was determined with p < 0.05.  All one-way ANOVA data 

are normalized to the VEH-VEH group and presented as % VEH controls ± SEM.  For 

comparisons of net differences from repeated treatment, data were first normalized to the VEH-

VEH group and values calculated as: VEH-THC – VEH-VEH and THC-THC – THC-VEH.  

Significance for these data was determined with Student’s t-tests with p < 0.05 as significance. 

 

4.3 Results 

THC administration increases ΔFosB expression in the prefrontal cortex, nucleus accumbens and 

caudate-putamen. 

We have previously shown that repeated THC treatment induced ∆FosB when measured 

24 hours after the last drug injection (Chapter 1).  However, the effect of previous treatment with 

THC on acute THC-mediated ∆FosB induction has not been determined.  Therefore, studies were 

conducted to determine whether ∆FosB is induced by a single injection of THC and whether 

previous repeated THC treatment alters that response.  Repeated vehicle- (drug naïve) or THC- 

(THC-experienced) treated mice received a final injection of either vehicle or THC and brains 

were collected 45 minutes after injection to measure ∆FosB.   No significant differences were 

found in the nucleus accumbens using one-way ANOVA, but post-hoc test determined that 

ΔFosB-ir was significantly different in THC-THC compared to VEH-VEH (increased by 36% ± 

13% compared to VEH-VEH; p < 0.05, Figure 4.1 B) treated mice.  One-way ANOVA in the 
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caudate-putamen showed a significant effect of treatment (F3, 28 = 5.548 p < 0.01). ΔFosB-ir was 

significantly increased by 46% ± 12% (p < 0.01, Figure 4.1 C) in THC-VEH compared to VEH-

VEH-treated mice. ∆FosB-ir in VEH-THC-treated mice was also significantly different from 

values in VEH-THC-treated mice (p < 0.05, Figure 4.1 C).  One-way ANOVA determined a 

significant difference in ∆FosB-ir between groups in the prefrontal cortex (F3,28 = 8.116, p < 

0.001). ΔFosB-ir was significantly increased by 66% ± 6% in THC-THC-compared to VEH-

VEH-treated mice (p < 0.001, Figure 4.1 A).  ∆FosB-ir in THC-THC treated mice was also 

significantly different from levels in mice that received VEH-THC (p < 0.01, Figure 4.1 A) or 

THC-VEH (p < 0.05, Figure 4.1 A) treatment. There was no significant change in ΔFosB-ir 

following acute or repeated THC administration in the hippocampus, consistent with our 

previous studies (Figure 4.1 D).  These results suggest that while ∆FosB is not induced by acute 

THC administration, ΔFosB-ir is increased following repeated THC administration.  Further, 

ΔFosB induction following THC-challenge in THC-experienced animals is enhanced compared 

to a single administration of THC in naïve animals in the nucleus accumbens and prefrontal 

cortex.  
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Figure 4.1 ΔFosB expression is increased following repeated THC administration in the 

prefrontal cortex, nucleus accumbens, caudate-putamen but CDK5 expression is only increased 

in the prefrontal cortex.  Graphs representing ΔFosB-ir and CDK5-ir expressed as percent 

expression in VEH-VEH-treated control mice for (A) prefrontal cortex (B) nucleus accumbens 

(C) caudate-putamen and (D) hippocampus. Values are represented as % VEH-VEH controls ± 

SEM. Significance was determined with one-way ANOVA and Bonferroni post-hoc test * p< 

0.05, ** p < 0.01 and ***p < 0.001 compared to VEH-VEH controls.  # p < 0.05 and ## p < 0.01 

compared to VEH-THC treated mice. ^ p < 0.05 compared to THC-VEH treated mice. N = 8 per 

group  
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THC administration enhances CDK5 expression in the prefrontal cortex 

CDK5 has been identified as a downstream target of ∆FosB following induction by 

cocaine treatment, but the effect of THC treatment on CDK5 is not known.  Therefore, CDK5 

was measured by immunoblot in the same brain regions of the four treatment groups.  

In contrast to the results with ∆FosB, there were no significant differences in CDK5-ir between 

any treatment groups in the nucleus accumbens (Figure 4.1 B) or caudate-putamen (Figure 4.1 

C).  There were also no significant differences in the expression of CDK5-ir between treatment 

groups in the hippocampus (Figure 4.1 D).  Results in the prefrontal cortex showed a significant 

effect of treatment on CDK5-ir between treatment groups (F3,28 = 11.59, p < 0.001).  CDK5-ir 

was significantly increased by 43% ± 3% in THC-THC-treated mice compared to VEH-VEH- (p 

< 0.001, Figure 4.1 A), VEH-THC- (p < 0.001) and THC-VEH-treated (p < 0.05) mice.  CDK5-

ir was also significantly increased by 22% ± 4% in THC-VEH compared to VEH-VEH- treated 

mice (p < 0.05, Figure 4.1 A). These results suggest there are brain region-dependent differences 

in ΔFosB-mediated regulation of CDK5 following repeated THC-administration. 

 

Levels of FosB, ∆FosB and CDK5 mRNA and proteins differ depending on THC experience  

The finding that both ∆FosB and CDK5 were increased after acute THC injection in 

repeated THC-treated mice suggests that these changes occur at either the level of transcription 

or translation.  To address whether these effects occur at the level of transcription, mRNA levels 

of ∆FosB and CDK5 were measured in the prefrontal cortex. Because ∆FosB is a splice variant 

of FosB, experiments were first conducted to determine whether FosB protein is also regulated 

by THC. Results showed no significant difference using one-way ANOVA, but post-hoc test 

determined that FosB-ir was significantly increased in VEH-THC- as compared to VEH-VEH-
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treated mice (79% ± 22% increase compared to VEH-VEH; p < 0.01, Figure 4.2 A).  At the 

mRNA level, acute THC administration increased FosB mRNA levels by 96% ± 36% compared 

to VEH-VEH-treated mice (F3,18 = 3.384 p < 0.05, Figure 4.2 B).   In contrast to FosB mRNA 

levels, ΔFosB mRNA levels were not increased with acute THC administration but were 

increased in THC-THC-treated mice (50% ± 21% compared to VEH-VEH-treated mice (F3,18 = 

5.0126 p < 0.05, Figure 4.2 C).   CDK5-ir was also enhanced in the prefrontal cortex after THC 

injection in VEH-treated mice, so CDK5 mRNA levels were also assessed following THC 

administration. Comparisons between treatment groups found no significant differences in 

CDK5 mRNA levels. These results suggested similar differences between protein changes and 

mRNA for FosB and ΔFosB depending on the drug experience of the animals.  FosB 

mRNA/protein (Figure 4.3 A) were increased after THC injection in VEH-treated mice and 

∆FosB mRNA/protein (Figure 4.3 B) were increased after THC injection in THC-treated mice.  

Comparisons of CDK5 mRNA/protein were not similar, however, a comparison of CDK5 mRNA 

expressed as a net difference from either repeated vehicle or repeated THC showed that CDK5 

mRNA expression significantly differed depending on the drug experience of the animal.  Mice 

that received THC challenge following repeated vehicle treatment (VEH-THC) had a decrease of 

19% ± 16% in CDK5 mRNA, while mice that received THC-challenge following repeated THC 

administration (THC-THC) had an increase of 31% ± 14% in CDK5 mRNA (p < 0.05, df = 9, 

Figure 4.3 C).  Although there was no significant difference between CDK5-ir following these 

treatments, there was a trend towards increased CDK5 expression (p = 0.058).  
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Figure 4.2 FosB mRNA/protein is increased in the prefrontal cortex in VEH-THC treated mice, 

whereas ΔFosB mRNA is increased following THC-THC treatment.  (A) Graph representing 

FosB-ir in the prefrontal cortex as percent expression in VEH-VEH-treated controls ± SEM. 

Graphs representing mRNA levels in prefrontal cortex expressed as VEH-VEH-treated controls 

± SEM for (B) FosB, (C) ΔFosB and (D) CDK5. A: One-way ANOVA with Bonferroni post-hoc 

test ** p < 0.01, N = 8 per group. N = 5-6 for mRNA, N = 8 for protein. 
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Figure 4.3 ΔFosB mRNA/protein is enhanced in prefrontal cortex following THC-challenge in 

THC-experienced mice. Comparisons were made between mRNA/protein expression following 

THC-challenge in both drug naïve and THC-experienced mice in prefrontal cortex for (A) FosB, 

(B) ΔFosB and (C) CDK5.  Data presented as the net difference in mRNA/protein expression for 

mice that received THC-challenge following repeated vehicle treatment (VEH-THC) and THC-

challenge in following repeated THC treatment (THC-THC).  Student’s t-test * p < 0.05 

compared to net repeated treatment in VEH-THC group.   
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Increased phosphorylation of ERK1, but not DARPP-32, occurs in the prefrontal cortex 

following THC administration in THC-experienced mice 

The enhanced induction of ΔFosB found in the prefrontal cortex following THC injection 

in repeated THC-treated mice could occur due to changes in signaling proteins upstream of 

ΔFosB.  ∆FosB induction can be regulated by phosphorylation of ERK1 at Thr202/Tyr204 and/or 

DARPP-32 at threonine 34. Phosphorylation of ERK1 and DARPP-32 was determined by 

measuring phosphorylation levels/ total protein levels. ERK1 phosphorylation was significantly 

increased by 53% ± 10% in the prefrontal cortex of THC-THC-treated mice compared to VEH-

VEH-treated mice (p < 0.05, Figure 4.4), but there was no significant difference in ERK1 

phosphorylation in VEH-THC- compared to VEH-VEH-treated mice.  Phosphorylation of 

DARPP-32 at threonine 34 did not significantly differ between any treatment groups in the 

prefrontal cortex (Table 4.2).  Phosphorylation of ERK1 and DARPP-32 was also determined in 

the caudate-putamen, a region in which THC-THC treatment did not enhance ΔFosB induction.  

There was no significant change in the phosphorylation of either ERK1 (data not shown) or 

DARPP-32 at threonine 34 (Table 4.2) for any treatment condition.  These results suggest that 

enhanced ΔFosB induction in the prefrontal cortex could be mediated by phosphorylation of 

ERK1.   
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Figure 4.4 ERK1 phosphorylation is significantly increased in prefrontal cortex following THC-

challenge in THC-experienced mice.  Graph representing pERK1-ir/Total ERK-ir in the 

prefrontal cortex as percent expression in VEH-VEH-treated controls ± SEM.  One-way 

ANOVA followed by Bonferroni post-hoc test, * p < 0.05. N = 8 per group 
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Expression of p35/p25 and tau phosphorylation are increased in the prefrontal cortex following 

THC injection in THC-experienced mice 

CDK5 phosphorylates several targets, including DARPP-32 at threonine 75 (Bibb et al., 

1999), tau protein at Ser202/Thr205 (Hashiguchi et al., 2002) and GSK3β at Ser9 (Morfini et al., 

2004) when it is dimerized with either p35 or its cleaved form, p25.  Therefore, increases in 

CDK5, p35 and p25 could lead to an increase in phosphorylation of these proteins.  In the 

prefrontal cortex, significant differences in p35-ir were found between treatment groups (F3,28 = 

7.196, p < 0.01, Figure 4.5 A).  Expression of p35 was significantly increased by 21% ± 6% in 

THC-THC-treated compared to VEH-VEH-treated (p < 0.001, Figure 4.5 A) or VEH-THC-

treated (p < 0.01, Figure 4.5 A) mice.  Expression of p35 was also significantly increased by 

14% ± 2 % (p < 0.05, Figure 4.5 A) in THC-VEH- compared to VEH-VEH-treated mice.  Based 

on these results, levels of p25, the cleavage product of p35, were measured.  For p25, although 

there were no significant differences by one-way ANOVA, post-hoc test determined that THC-

VEH-treated mice had significantly increased p25-ir (33% ± 9 %, p < 0.05, Figure 4.5 B) 

compared to VEH-VEH-treated mice. THC-THC-treated mice also had significantly increased 

p25 expression (29% ± 8%, p < 0.05, Figure 4.5 B) compared to VEH-VEH-treated mice.  

   Studies were then conducted to determine whether increased expression of CDK5 and 

p35/p25 occurred in conjunction with changes in the phosphorylation of target proteins in the 

prefrontal cortex.  Phosphorylation of the Ser202/Thr205 site of tau was significantly increased 

by 33% ± 8% in THC-THC-treated mice compared to VEH-VEH-treated mice (p < 0.05, Figure 

4.5 C). There were no other significant differences in the phosphorylation of tau between groups.  

Phosphorylation of the Ser9 site of GSK3β was significantly decreased by 38% ± 6 % and 38% ± 

5% in THC-VEH (p < 0.001, Figure 4.5 D) and THC-THC (p < 0.001, Figure 4.5 D), treated 
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mice, respectively, compared to VEH-VEH-treated mice. This suggests that repeated THC 

administration decreased phosphorylation of GSK3β at Ser9 and that these levels remained 

decreased after THC-challenge.  There were no significant differences in the phosphorylation of 

DARPP-32 at threonine 75 for any treatment (Table 4.3).  These data show that increased CDK5 

expression is associated with increased phosphorylation of tau in THC-THC-treated mice, 

whereas decreased phosphorylation of GSK3β was found in THC-VEH- and THC-THC-treated 

mice.   
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Figure 4.5 p35 and p25 expression are increased in the prefrontal cortex following repeated 

THC administration whereas pTau is increased and pGSK3 is decreased.  (A) p35 expression (B) 

p25 expression (C) phosphorylation of tau at Serine 202/Threonine 205 and (D) GSK3β 

phosphorylation at serine 9. Values represented as % VEH-VEH controls ± SEM. One-way 

ANOVA with Bonferroni post-hoc test. * p < 0.05 and ***p < 0.001 compared to VEH-VEH 

controls. ## p < 0.01 compared to THC-VEH administration. N = 8 per group  
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Expression of p35 is reduced in the caudate-putamen and substantia nigra of THC-THC-treated 

mice 

Analysis of signaling proteins related to ∆FosB and CDK5 in the prefrontal cortex 

showed that expression of p35/p25 could be regulated by THC treatment.  In order to fully assess 

these signaling pathways and determine the regional profile of THC-mediated regulation of these 

pathways, expression of p35/p25 was measured in additional forebrain regions.  Expression of 

DARPP-32 was also assessed because D1Rs in these regions are required for THC-mediated 

∆FosB induction (Chapter 3).  In the nucleus accumbens, there were no significant differences 

between any of the treatment groups for expression of p35, p25 (Figure 4.6 A) or 

phosphorylation of DARPP-32 at either threonine 34 or threonine 75 (Table 4.2 and 4.3).  In the 

caudate-putamen, one-way ANOVA determined a significant difference (F3, 28 = 3.108, p < 0.05) 

in p35-ir between the VEH-THC (increased by 26% ± 15%) and THC-THC (decreased by 15% ± 

5%) compared to VEH-VEH-treated mice (p < 0.05, Figure 4.6 B). Expression of p35 in THC-

THC-treated mice was also significantly different (p < 0.05, Figure 4.6 B) from THC-VEH-

treated mice (17% ± 9% increase compared to VEH-VEH-treated mice).  There were no 

significant differences in p25 levels between any of the groups tested.  There were no significant 

differences in the phosphorylation of DARPP-32 at either the threonine 34 or threonine 75 site 

between any of the groups in the caudate-putamen (Table 4.2 and 4.3).  Levels of p25 and p35 

were also measured in the hippocampus, but there were no significant differences in expression 

between the treatment groups (Figure 4.6 C).  Expression of DARPP-32 was not detectable in the 

hippocampus with 50µg of total protein loaded.  Overall, these results show that p35 is regulated 

by THC treatment only in the caudate-putamen and that DARPP phosphorylation is not affected 

by these THC treatments in the nucleus accumbens or caudate-putamen.   
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Results in the caudate-putamen showed that ∆FosB and p35 were regulated by THC 

treatment, although the other proteins examined were not affected.  CB1Rs on striatal MSNs are 

predominantly expressed on axon terminals in the globus pallidus and substantia nigra, 

suggesting that THC-mediated regulation of signaling might occur in these projection regions. 

ΔFosB expression was not assessed because the globus pallidus and substantia nigra contain 

primarily efferent projections from the caudate-putamen and not the cell bodies of origin where 

FosB would be expressed.  In the globus pallidus, there were no significant differences in CDK5-

ir, p35-ir or p25-ir (Figure 4.7 A) between the treatment groups. There were also no significant 

differences in CDK5-ir in the substantia nigra of any of the THC-treated groups (Figure 4.7 B).  

For p35-ir in substantia nigra, there was no significant difference by one-way ANOVA, but post-

hoc test determined a significant difference between THC-VEH- (26% ± 15% increase) and 

THC-THC-treated (17% ± 3% decrease) compared to VEH-VEH-treated mice (p < 0.01, Figure 

4.7 B).  For p25, one-way ANOVA showed a significant difference between treatments (F1,28 = 

3.507 p < 0.05, Figure 4.7 B), and post-hoc test determined a significant difference between 

VEH-THC- (13 ± 10% decrease) and THC-VEH-treated mice (27% ± 11% increase) compared 

to VEH-VEH-treated mice. There were no significant differences in the phosphorylation of 

DARPP-32 at either the threonine 34 or threonine 75 site in the globus pallidus or substantia 

nigra (Table 4.2 and 4.3).  These results showed that none of the proteins examined was 

regulated by THC in the globus pallidus.  However, repeated THC treatment with THC injection 

reduced p35-ir in the substantia nigra, which is similar to results in the caudate-putamen. In the 

substantia nigra, expression of p25 was regulated differently following a single injection of THC 

compared to repeated THC administration. 
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Figure 4.6 p35 expression is reduced in the caudate-putamen of THC-THC-treated mice. Graphs 

representing p35-ir and p25-ir as percent expression in VEH-VEH-treated controls ±SEM for (A) 

nucleus accumbens (B) caudate-putamen and (D) hippocampus. Values are represented as % 

VEH-VEH controls ± SEM. Significance was determined with one-way ANOVA and Bonferroni 

post-hoc test.  # p < 0.05 compared to THC-VEH administration. ^ p < 0.05 compared to THC-

VEH administration. N = 8 per group 

 

 

 

 

 

 



www.manaraa.com

 
 

164 
 

THC challenge in THC-experienced mice decreases phosphorylation of DARPP-32 at threonine 

34 in cerebellum 

For ΔFosB, there was a significant difference between treatment groups in the cerebellum 

based on one-way ANOVA (F1,28 = 14.98, p < 0.001).  Post-hoc test determined a significant 

increase in ∆FosB-ir in THC-VEH- (36% ± 4%, p<0.01, Figure 4.7 C) and THC-THC-treated 

mice (58% ± 7%, p<0.001, Figure 4.7 C) compared to VEH-VEH-treated mice.  ∆FosB 

expression was also significantly increased in THC-VEH-treated (p < 0.05, Figure 4.7 C) and 

THC-THC-treated mice (p < 0.001, Figure 4.7 C) compared to VEH-THC-treated mice.  CDK5-

ir, p35-ir and p25-ir were not significantly different between treatments (Figure 4.7 C); however, 

there was a significant decrease in phosphorylation of DARPP-32 at threonine 34 in THC-THC-

treated mice compared to VEH-VEH-treated mice (5.02% ± 0.37% vs. 3.91% ±0.28%, ratio of 

T34DARPP32/Total DARPP-32 (Table 4.2). There were no significant differences between 

treatment groups in the phosphorylation of DARPP-32 at threonine 75 (Table 4.3). 
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Figure 4.7 Expression of p25 was increased following repeated THC administration, whereas 

p35 wass decreased after THC injection in THC-experienced mice in substantia nigra. (A) 

CDK5-ir, p35-ir and p25-ir in the globus pallidus (B) CDK5-ir, p35-ir and p25-ir in the 

substantia nigra, (C) CDK5-ir, p35-ir and p25-ir in the cerebellum.  Values represented as % 

VEH-VEH controls ± SEM. One-way ANOVA with Bonferroni post-hoc test. ** p < 0.01 and 

***p < 0.001 compared to VEH-VEH controls. # p < 0.05, ## p < 0.01, ### p < 0.001 compared 

to THC-VEH-treated mice.  ^^ p < 0.01 compared to THC-VEH-treated mice. N = 8 per group 
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TABLE 4.2 

Immunoblot results for phosphorylation of DARPP-32 at threonine 34/total DARPP-32 

Brain Region VEH-VEH VEH-THC THC-VEH THC-THC 

Prefrontal cortex 5.15 ± 1.09 4.34  ± 0.99 6.26 ± 1.11 4.28 ± 0.79 

Caudate-putamen 23.00 ± 3.86 18.75  ± 2.47 23 ± 2.78 19.56 ± 2.39 

Nucleus 

accumbens 

19.71 ± 2.40 19.72 ± 2.13 19.20 ± 1.40 19.62 ± 1.50 

Globus pallidus 23.20 ± 3.37 22.22  ± 3.35 22.72 ± 3.41 26.63 ± 3.31 

Hippocampus NA NA NA NA 

Substantia Nigra 22.86 ± 3.38 23.51  ± 4.22 22.57 ± 2.87 20.45 ± 2.03 

Cerebellum 5.02 ± 0.38 4.20 ± 0.43 4.96 ± 0.36 3.91 ± 0.28* 

 

Total DARPP-32-ir and DARPP-32-ir phosphorylated at threonine 34 (T34-DARPP-32) were 

measured in brain region homogenates as described in Methods.  Results are expressed as T34-

DARPP-32/total DARPP-32 * 100% ± SEM.  * p < 0.05 different from vehicle-vehicle controls 

by one-way ANOVA and Bonferroni post-hoc test, N = 8 per group. 

TABLE 4.3 

Immunoblot results for phosphorylation of DARPP-32 at threonine 75/total DARPP-32 

Brain Region VEH-VEH VEH-THC THC-VEH THC-THC 

Prefrontal cortex 19.18 ± 2.27 19.63  ± 4.39 22.74 ± 5.26 21.36 ± 2.88 

Caudate-putamen 9.94 ± 0.83 8.89 ± 0.72 10.21 ± 0.68 10.05 ± 0.83 

Nucleus 

accumbens 

14.79 ± 1.23 15.69  ± 1.02 14.80 ± 0.81 16.06 ± 1.52 

Globus pallidus 13.34 ± 0.75 13.71 ± 0.41 14.71 ± 1.30 15.37 ± 1.05 

Hippocampus NA NA NA NA 

Substantia Nigra 3.36 ± 0.29 3.18 ± 0.35 3.48 ± 0.49 3.45 ± 0.48 

Cerebellum 43.04 ± 3.74 48.33 ± 5.14 42.60 ± 4.60 45.51 ± 5.65 

 

Total DARPP-32-ir and DARPP-32-ir phosphorylated at threonine 75 (T75-DARPP-32) were 

measured in brain region homogenates as described in Methods.  Results are expressed as T75-

DARPP-32/total DARPP-32 * 100% ± SEM, N = 8 per group. 
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4.4 Discussion 

The present study compared THC-mediated induction of ΔFosB and its target proteins in 

drug naïve and THC-experienced mice to determine the effect of prior THC treatment on THC-

mediated transcription.  Protein expression was measured in forebrain regions that mediate the 

development of drug abuse and addiction (Koob and Volkow, 2010).  In the prefrontal cortex, 

caudate-putamen and nucleus accumbens, repeated THC administration increased ΔFosB 

expression, in agreement with previous studies performed in our laboratory (Chapter 1).  ΔFosB 

expression was also assessed in the cerebellum, because this brain region is thought to mediate 

extrapyramidal effects of cannabinoids (Castane et al., 2004; Patel and Hillard, 2001).  Studies 

also determined that ΔFosB is not induced following acute THC injection, which is consistent 

with other studies that tested acute administration of morphine (Nye and Nestler, 1996) and 

cocaine (Nye et al., 1995).  

THC-mediated ΔFosB induction was measured at both 45 minutes and 24 hours after 

THC injection, whereas previous studies assessed ∆FosB at 24 hours after THC-administration. 

Results showed that there are brain region-dependent differences in the induction of ΔFosB 

following THC injection in THC-experienced mice. After acute administration of THC, it was 

determined that ΔFosB expression did not change in prefrontal cortex, nucleus accumbens, 

caudate-putamen, hippocampus and cerebellum.  However, repeated THC administration did 

increase ΔFosB expression in the prefrontal cortex, nucleus accumbens, caudate-putamen and 

cerebellum, but not in hippocampus.  In the prefrontal cortex, ΔFosB induction was enhanced in 

THC-experienced mice compared to drug naïve mice that received THC injection.  A previous 

study showed that cocaine administration enhanced ΔFosB protein/mRNA expression, but not 
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FosB protein/mRNA expression, in the nucleus accumbens of cocaine-experienced mice that 

received a challenge of cocaine following 28 days of withdrawal (Damez-Werno et al., 2012).  

Although this effect was not seen in nucleus accumbens after THC-treatment, it was seen in 

prefrontal cortex.  ΔFosB mRNA/protein expression was enhanced in THC-experienced mice 

that received THC challenge, supporting the idea that THC-experience alters induction of ΔFosB 

produced by THC injection. Damez-Werno et al (2012) showed that dimethylation of histone H3 

at lysine 9 (H3K9me2) and increased stalled RNA polymerase II (Pol II) binding may have 

contributed to the enhancement of ∆FosB induction, but the phosphorylation of ERK was not 

involved (Damez-Werno et al., 2012).  In the current study, ERK1 phosphorylation was enhanced 

in the prefrontal cortex of THC-experienced mice that received THC injection, which is a 

possible mechanism that could underlie the enhanced induction of ΔFosB.  Genetically modified 

mice that have reduced ERK phosphorylation also exhibited reductions in ΔFosB expression 

following repeated cocaine administration (Besnard et al., 2011; Fasano et al., 2009), suggesting 

a role for ERK phosphorylation in ΔFosB induction.  Increased DARPP-32 phosphorylation at 

threonine 34 can also regulate ΔFosB induction (Zachariou et al., 2006b); however, there was no 

change in phosphorylation of DARPP-32 at this site in the current study.  We have previously 

reported that DARPP-32 is not necessary for THC-mediated induction of ΔFosB in the striatum 

(Chapter 3), which suggests that DARPP-32 is most likely not necessary for enhancement of 

∆FosB induction.    

 ΔFosB transcriptionally regulates the expression of CDK5 and p35 (Bibb et al., 1999; 

Chen et al., 2000b; Kumar et al., 2005; Peakman et al., 2003), therefore these proteins were 

assessed in brains from the same treatment groups.  In the prefrontal cortex, expression of CDK5 

and p35 were increased following repeated THC administration, but not by acute THC 
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administration, supporting a role for ΔFosB in regulating these proteins.  In the prefrontal cortex, 

there was a similar enhancement of CDK5 expression as was found for ΔFosB.  Therefore, 

CDK5 mRNA levels were measured and it was determined that CDK5 mRNA expression was 

differed following THC injection in drug naïve (decreased CDK5 mRNA expression) and THC 

experienced (increased CDK5 mRNA expression) mice.  These results suggest that enhanced 

ΔFosB induction also leads to enhanced CDK5 expression through ΔFosB-mediated regulation 

of transcription.  CDK5 expression was not increased in the nucleus accumbens or caudate-

putamen, suggesting that although THC induces ΔFosB, it does not appear to regulate CDK5 

expression in these regions. This finding is different from studies with cocaine and in mice 

overexpressing ΔFosB in the striatum (Bibb et al., 2001a), suggesting that THC negatively 

regulates ΔFosB-mediated transcription of CDK5 in the caudate putamen and substantia nigra. 

 ΔFosB also regulates expression of p35, which dimerizes with CDK5 and facilitates its 

kinase function.  In the nucleus accumbens and cerebellum, p35 expression did not change with 

repeated THC administration, suggesting that ΔFosB does not regulate p35 expression in these 

regions following THC administration.  In the caudate-putamen, p35 expression differed between 

drug naïve and THC-experienced mice that received THC injection.  Acute THC administration 

actually increased p35 expression, suggesting that a different transcription factor might regulate 

p35 induction in the caudate-putamen.  In fact, early growth response protein 1 (EGR1), also 

known as zif268 and krox-24, has been implicated in the induction of p35 (Utreras et al., 2011) 

and is induced in the caudate-putamen by acute THC administration (Mailleux et al., 1994).  In 

THC-experienced mice, the decrease in p35 expression could be due to either increased calpain-

mediated cleavage of p35 to p25 (Kusakawa et al., 2000) or through the proteasome pathway as a 

result of phosphorylation of p35 (Kerokoski et al., 2002; Patrick et al., 1998; Saito et al., 1998).  
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It would appear that the latter is more likely because p25 expression did not increase in the 

caudate-putamen following THC injection in THC-experienced mice.  There was a similar effect 

for p35 in the substantia nigra, where repeated THC administration increased p35 expression, but 

THC challenge in THC-experienced mice decreased p35.  D1R/dynorphin MSNs in the caudate-

putamen project to the substantia nigra, therefore it is possible that repeated THC administration 

might increase trafficking of p35 from these neurons to axonal projections in the substantia nigra. 

It is possible that p35 is also increased in neuronal cells of the substantia nigra.  Similar to the 

caudate-putamen, the cleavage of p35 to p25 does not explain the decrease of p35 expression in 

the substantia nigra following THC injection in THC-experienced mice.  However, there was an 

increase in p25 expression in the substantia nigra following repeated THC administration, 

suggesting that THC mediates increased cleavage of p35 to p25 in this region.  There was no 

change in CDK5, p35 or p25 expression in the globus pallidus, suggesting that the same 

signaling responses that occur in D1R/dynorphin MSNs do not occur in dopamine type 2 receptor 

(D2R)/enkephalin MSNs.  This would agree with our previous findings that ΔFosB induction in 

caudate-putamen is primarily restricted to neurons that express dynorphin (Chapter 3). 

Expression of both p35 and p25 increased in the prefrontal cortex, which would increase 

the kinase activity of CDK5 (Kusakawa et al., 2000; Tsai et al., 1994).  Three substrates of 

CDK5: DARPP-32, GSK3β and tau protein were assessed for phosphorylation levels to 

determine if increases in p35/p25 would increase CDK5 kinase activity.  Phosphorylation of tau 

at Ser202/Thr205 was increased in the prefrontal cortex of THC-experienced mice that received 

THC injection, whereas DARPP-32 phosphorylation at Thr75 was unchanged and GSK3β 

phosphorylation of Ser9 was decreased.  Although the increase in phosphorylation of tau would 

suggest an increase in CDK5 kinase activity, CDK5 activity assays are necessary to assess CDK5 
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activity.  Phosphorylation of tau, DARPP-32 and GSK3β involve complex signaling pathways, 

so it is not clear why THC injection in THC-experienced mice did not increase phosphorylation 

of all three substrates.  The finding that tau was phosphorylated in the prefrontal cortex after 

repeated THC administration is interesting because previous studies have suggested that 

synthetic cannabinoids (WIN55,212-2 and arachidonyl-2-chloroethylamide) are neuroprotective 

in Alzheimer’s disease-related mouse models (Aso et al., 2012).  The current results suggest that 

THC might not be neuroprotective because hyperphosphorylation of tau is actually a symptom of 

Alzheimer’s disease and THC-mediated phosphorylation of tau could exacerbate this condition 

(Pettegrew et al., 1987).   

DARPP-32 phosphorylation was unchanged in most brain regions following either acute 

or repeated THC administration.  Previous studies in the striatum found that acute administration 

of either CP55,940 (Andersson et al., 2005) or THC (Borgkvist et al., 2008) increased 

phosphorylation of DARPP-32 at threonine 34 in caudate-putamen and nucleus accumbens of 

mice.  Other studies have found that acute administration of THC in rats increased DARPP-32 

phosphorylation at threonine 34 in the prefrontal cortex (Polissidis et al., 2010).  The same dose 

of THC and the same strain of mice were used in the current study as Borgkvist et al. (2008); 

however, we measured DARPP-32 phosphorylation at 45 minutes. Borgkvist et al. (2008) 

showed that phosphorylation of DARPP-32 at threonine 34 was maximal at 30 minutes and was 

gone by one hour.  Our studies would suggest that the threonine 34 site of DARPP-32 is 

dephosphorylated back to baseline levels by 45 minutes.  The finding that repeated THC 

administration did not increase phosphorylation of DARPP-32 at threonine 75 in the nucleus 

accumbens, caudate-putamen or cerebellum, is likely due to the lack of increase in CDK5, p35 

and p25 expression in those brain regions.  Phosphorylation of DARPP-32 at threonine 34 was 
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decreased in the cerebellum following THC injection in THC-experienced mice, suggesting that 

THC modulates DARPP-32 phosphorylation in this region.   

Studies with other drugs of abuse, like cocaine, have focused on signaling changes in the 

nucleus accumbens, whereas THC administration produced few changes in the nucleus 

accumbens.   However, the current study demonstrates that the neurochemistry of the prefrontal 

cortex changes dramatically with administration of THC.  Meta-analysis of neuroimaging studies 

in adolescent and adult human cannabis users found that alterations in frontal cortex volumes and 

cerebral blood flow following both THC administration and during memory-related tasks were 

common in many studies (Batalla et al., 2013), suggesting an important role for this region in 

continued marijuana use.  ΔFosB appears to be an important regulator of these signaling changes 

because CDK5 and p35 expression were increased in prefrontal cortex.  Moreover, repeated THC 

administration regulated other signaling cascades, including increases in ERK1 phosphorylation, 

decreases in GSK3β phosphorylation at Ser9 and increases in tau phosphorylation.  

Maladaptation of the prefrontal cortex, manifested as alterations in delta and gamma oscillations, 

is consistently found in schizophrenia patients (Curley and Lewis, 2012).  Positron emission 

topography (PET) studies, using the CB1R-specific ligand [
11

C]JHU75528, determined that 

CB1R levels are increased in the frontal cortex, caudate and putamen and globus pallidus, among 

others, suggesting that CB1Rs might mediate these changes in gamma oscillations (Wong et al., 

2010).  A higher percentage of schizophrenic patients also abuse marijuana compared to 

populations of healthy individuals, and it has been suggested that marijuana use exacerbates 

disease progression (Bossong and Niesink, 2010; Weiser and Noy, 2005).  The changes in 

signaling found in prefrontal cortex following repeated THC administration might offer insights 

into possible mechanisms underlying this observation.   
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  The results of these studies suggest that repeated THC treatment alters signaling 

pathways such that THC injection produces very different effects in THC-experienced versus 

drug naïve mice.  These studies are consistent with reports showing that cocaine-mediated 

increases in CDK5 and p35 could result from the induction of ΔFosB following repeated drug 

administration. However, THC-mediated signaling changes occurred predominantly in the 

prefrontal cortex, whereas cocaine-mediated signaling changes were found in the nucleus 

accumbens.  These findings suggest that drug-induced changes in signaling are both drug- and 

brain region-dependent.   
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Conclusions and Perspectives 

 

 

 

TABLE 5.1 

Summary of major findings in this dissertation 

 

 

Abbreviations: PFC, prefrontal cortex, CPu, caudate-putamen, Acb, nucleus accumbens, AMYG, 

amygdala, VTA, ventral tegmental area, SN, substantia nigra 
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The thesis chapters, contained herein, addressed the role of the transcription factor, 

ΔFosB, in regulating both CB1R signaling and adaptation following repeated THC 

administration and some of the possible mechanisms involved in THC-mediated induction of 

ΔFosB.  It was hypothesized that ΔFosB would reduce CB1R desensitization and contribute to 

the brain region-dependent differences in CB1R desensitization that occur following repeated 

THC administration.  Studies in Chapter 2 were designed primarily to address the relationship 

between ∆FosB and CB1R desensitization/downregulation and tolerance.  However, the finding 

that THC-mediated induction of ΔFosB was more regionally widespread than had been 

previously determined (Perrotti et al., 2008), suggests that this transcription factor could play an 

important role in other physiological changes following repeated THC administration.  Major 

findings from these dissertation studies include: 1) that THC-mediated induction of ΔFosB in the 

caudate-putamen and nucleus accumbens is CB1R-dependent 2) that THC-mediated induction of 

ΔFosB is D1R-dependent in the prefrontal cortex, caudate-putamen, nucleus accumbens and 

amygdala 3) that overexpression of ΔFosB in D1R/dynorphin containing MSNs of the striatum 

reduce CB1R desensitization in their respective output nuclei, and 4) that the FosB promoter is 

primed in the prefrontal cortex such that THC challenge in THC-experienced mice enhances 

ΔFosB induction. 

These studies investigated possible mechanism(s) that might underlie brain region-

dependent differences in CB1R desensitization/downregulation.  Studies in Chapter 1 showed an 

inverse region-dependent correlation between CB1R desensitization and ΔFosB induction.  It was 

determined that regions like the caudate-putamen and nucleus accumbens exhibited significant 

ΔFosB induction in the absence of CB1R desensitization, whereas the hippocampus exhibited 

significant CB1R desensitization without ΔFosB induction following repeated THC 
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administration.  In Chapter 1, studies utilizing mice with genetic deletion of CB1Rs determined 

that the induction of ΔFosB following repeated THC administration was dependent on CB1R 

expression in the caudate-putamen and nucleus accumbens, and that CB1Rs were located on 

axonal terminals surrounding ΔFosB positive cells and within the cell bodies of ΔFosB positive 

cells.  These studies provided evidence that, following repeated THC administration, CB1Rs 

were necessary for ΔFosB induction and that ΔFosB could modulate CB1R signaling.  These 

studies did not address whether CB1Rs located on astrocytes may also play a role in ΔFosB 

induction or whether ΔFosB is induced in astrocytes following repeated THC administration 

CB1Rs are expressed by astrocytes and function to support neuronal cell viability (Stella, 2010).     

Based on the inverse regional correlation between ∆FosB and CB1R desensitization 

determined in Chapter 1, studies in Chapter 2 were designed to determine whether 

overexpression of ΔFosB could regulate CB1R desensitization following repeated THC 

administration.  To test this hypothesis, mice overexpressing ΔFosB or ΔcJun, a dominant 

negative inhibitor of ΔFosB, were assessed after repeated THC treatment.  One group of mice 

overexpressed ΔFosB primarily in the D1R/dynorphin MSN population of the striatum, which 

project to the substantia nigra (cell bodies of origin in the caudate-putamen) and to the ventral 

tegmental area (cell bodies of origin in the nucleus accumbens).  These mice also overexpressed 

ΔFosB in the hippocampus and parietal cortex.  The other group of mice overexpressed ΔcJun in 

both the D1R/dynorphin and D2R/enkephalin MSN populations, which project to the globus 

pallidus (cell bodies of origin in the caudate-putamen) and to the ventral pallidum (cell bodies of 

origin in the nucleus accumbens).  These mice also overexpressed ΔcJun in the hippocampus and 

parietal cortex.   Based on our studies in Chapter 1, it was predicted that overexpression of 

ΔFosB would reduce CB1R desensitization in the caudate-putamen, nucleus accumbens, ventral 
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tegmental area and substantia nigra.  However, it was determined that overexpression of ΔFosB 

only reduced CB1R desensitization in the substantia nigra and ventral tegmental area.  The 

finding that overexpression of ΔFosB did not reduce CB1R desensitization in the caudate-

putamen and nucleus accumbens is likely due to the limited overexpression of ΔFosB in only the 

D1R-positive population of MSNs in these regions.  The caudate-putamen and nucleus 

accumbens also receive inputs from the cortex, amygdala, hippocampus and thalamus, which 

express CB1Rs.  Therefore, significant desensitization in these CB1R populations may have 

masked attenuation of CB1R desensitization in these regions.  Although ΔFosB is significantly 

increased in the hippocampus, this region did not exhibit reduced CB1R desensitization.  This 

finding likely reflects the lack of THC-mediated ΔFosB induction previously shown in the 

hippocampus (Chapter 1).  This is evidenced by our findings in Chapter 4, where ΔFosB did not 

cause induction of CDK5or p35 in the striatum.  These results suggest that ΔFosB could regulate 

different signaling proteins in a brain region-dependent manner that leads to regulation of CB1R 

desensitization.  Inhibition of ΔFosB-mediated transcription by overexpression of ΔcJun 

enhanced CB1R desensitization in the caudate-putamen, consistent with our hypothesis.  The 

difference between these results and those in ∆FosB overexpressing mice might reflect the fact 

that ΔcJun is overexpressed in both the D1R/dynorphin and D2R/enkephalin MSN populations.  

∆cJun overexpression did not enhance desensitization in substantia nigra.  It is possible that 

ΔcJun also inhibited the transcriptional regulation of other Fos family members, which are 

known to regulate the expression of different signaling proteins.  The results could also be due to 

the dose of THC administered (10-30-60 mg/kg).  It could be that the level of ΔFosB produced 

by this THC dose is not sufficient to reduce CB1R desensitization, whereas ΔFosB 

overexpression induces a higher level of protein induction.  These studies focused only on the 



www.manaraa.com

 
 

178 
 

effect of ΔFosB overexpression on CB1R desensitization in the striatum, but not regions like 

prefrontal cortex and amygdala where ΔFosB is also induced by THC.  Future studies should test 

whether overexpression of ∆FosB in the prefrontal cortex and amygdala would reduce 

desensitization in these regions.  These studies would help support our correlation model 

proposed in Chapter 1.  It is also important to note that the mice overexpressing ΔFosB were on a 

mixed C57BL/6J and FVB genetic background, whereas the mice overexpressing ΔcJun were on 

an FVB genetic background.  Future studies could address this issue by overexpressing ΔFosB or 

ΔcJun using viral vectors in the same mouse strain.   This could be an especially important 

consideration for in vivo studies assessing the effect of ∆FosB on THC-mediated effects. Results 

of studies in both Chapter 1 and Chapter 2 suggest that ΔFosB does not regulate CB1R 

desensitization in the hippocampus.  However, overexpression of ΔcJun inhibited CB1R 

desensitization in this region, suggesting that other Fos family members could regulate CB1R 

desensitization in the hippocampus.  Using mouse models with overexpression of other Fos 

family members, like c-Fos, could determine if c-Fos regulates CB1R desensitization.  Using 

viral vectors with siRNA, to knockdown c-Fos expression, would serve as a complement to this 

study.   

The rewarding effects of most drugs of abuse are associated with enhanced dopamine 

release in the shell of the nucleus accumbens (Pontieri et al., 1995).  Most drugs of abuse also 

induce ΔFosB in the nucleus accumbens following repeated administration (Perrotti et al., 2008).  

Studies in Chapter 1 showed that THC, which enhances dopamine release (Wu and French, 

2000), also induces ΔFosB in the nucleus accumbens, as well as prefrontal cortex, caudate-

putamen and basolateral amygdala (Polissidis et al., 2010).  Further, THC-mediated induction of 

ΔFosB is both CB1R- and D1R-mediated in the nucleus accumbens and caudate-putamen and 
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D1R-mediated in prefrontal cortex and amygdala.  Although it is not certain whether ΔFosB is a 

necessary component for the switch from occasional drug use to addiction, the results of these 

studies provide evidence that modulation of D1Rs would modulate the induction of ΔFosB and 

could alleviate marijuana dependence.  These results also highlight the need to focus on 

additional brain regions that contribute to addiction since ΔFosB is induced in the prefrontal 

cortex and amygdala.  These regions appear to be important for drug craving and drug-cued 

memory/reinstatement, respectively (Goldstein and Volkow, 2011; Stamatakis et al., 2013). 

The results showing that THC-mediated ΔFosB induction is blocked by D1R antagonists 

and that the majority of ∆FosB is expressed in D1R/dynorphin MSNs of the striatum are 

somewhat surprising since CB1Rs are found on both D1R/dynorphin and D2R/enkephalin MSNs 

(Hohmann and Herkenham, 2000).  Further, evidence would suggest that CB1Rs and D2Rs can 

dimerize (Wager-Miller et al., 2002) and that pharmacological inhibition or genetic deletion of 

D2Rs or A2A receptors (which are also located in D2R MSNs and purported to dimerize with 

CB1Rs) blocks cannabinoid-mediated phosphorylation of DARPP-32 at threonine 34 (Andersson 

et al., 2005; Borgkvist et al., 2008).  One explanation, supported by these dissertation studies, is 

that DARPP-32 might not be necessary for ΔFosB induction following repeated THC 

administration under the conditions tested in these studies.  However, ∆FosB induction produced 

by an acute administration of a 70 mg/kg dose of THC was abolished in DARPP-32 knockout 

mice.  It is possible that this dose of THC could produce acute induction of ΔFosB in the 

D2R/enkephalin MSN population through a DARPP-32-dependent mechanism.  One caveat to 

this interpretation is that blockade of D1Rs also inhibits THC-mediated phosphorylation of 

DARPP-32 at threonine 34 (Borgkvist et al., 2008).  Therefore, it is also possible that CB1R/D2R 

mediated signaling could enhance dopamine release and activate D1Rs, which is one mechanism 
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through which THC-mediated ΔFosB induction occurs.  However, it is still not clear if 

dimerization of CB1Rs and D2Rs could regulate the induction of ΔFosB in the D2R/enkephalin 

medium spiny neuron population.  The role of dimerization of these receptors in the induction of 

ΔFosB could be tested through simultaneous treatment of CB1R and D2R agonists.   Another 

caveat to this finding is that compensatory adaptations might occur in mice with global, lifelong 

deletion of DARPP-32.  Future studies could address this possibility using conditional DARPP-

32 knockout mice with temporally and spatially restricted DARPP-32 deletion.  The finding that 

genetic deletion of DARPP-32 also enhanced tolerance to the locomotor suppressing effects of 

THC suggests that these mice may also have brain region-dependent differences in CB1R 

desensitization.  This finding was similar to results showing that enhanced tolerance the 

locomotor suppressing effects of THC were found in mice with attenuated CB1R desensitization 

in the substantia nigra (through overexpression of ΔFosB) and enhanced CB1R desensitization in 

the caudate-putamen (through overexpression of ΔcJun).  It is not clear if these changes in CB1R 

desensitization are directly responsible for enhanced tolerance; however, measuring 

desensitization in DARPP-32 knockout mice might offer further evidence for whether 

differences in desensitization in these regions might be mediating this enhanced tolerance.  

Therefore, it is likely that brain region-dependent differences in CB1R desensitization contribute 

to this finding.  It is also possible that genetic deletion of DARPP-32 produces adaptations in 

CB1R signaling downstream of G-protein activation, perhaps at the effector level, which might 

explain the finding that DARPP-32 knockout mice also display increased locomotor suppression 

following acute THC administration.  Future studies are necessary to determine whether there are 

brain region-dependent differences in CB1R-mediated G-protein activity in drug naïve mice and 

CB1R desensitization following repeated THC administration between DARPP-32 knockout and 
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wild-type.  Autoradiographic studies, as performed in Chapter 2, would be appropriate in testing 

this hypothesis.     

There were also brain region-dependent differences in the regulation of CDK5 and p35, 

proteins that are transcriptionally regulated by ΔFosB (Bibb et al., 2001a).  Although ΔFosB 

expression was increased in the prefrontal cortex, caudate-putamen and nucleus accumbens after 

repeated THC administration, CDK5 and p35 expression were only increased in the prefrontal 

cortex.  This differs from previous studies that showed that cocaine-mediated ΔFosB induction is 

associated with increased expression of both CDK5 and p35 in the nucleus accumbens (Bibb et 

al., 2001a).  This highlights one major difference between these different drugs of abuse and 

could explain some of the preclinical rodent data that suggests that THC is not rewarding, 

whereas cocaine is consistently found to be rewarding under these preclinical conditions (Tanda 

and Goldberg, 2003).  The lack of changes in CDK5 and p35 expression in the nucleus 

accumbens of THC-treated mice could be due to degradation of the proteins because they are not 

as stably expressed as ΔFosB.  Studies were performed to address this possibility by measuring 

protein levels at both 24 hours (at which time ΔFosB would still be elevated due to its stability) 

and 45 minutes (to determine if CDK5 and p35 expression levels were elevated at earlier time 

points but degraded by 24 hours) after THC challenge.  Based on the results in the prefrontal 

cortex, one conclusion is that CDK5 and p35 are continuously regulated by ΔFosB since both 

CDK5 and p35 were elevated at the 24 hour time point.  However, additional studies would be 

needed to determine if CDK5 and p35 are also stable by using radiolabeled amino acids and 

measuring the time course of CDK5 and p35 degradation.  Assessment at earlier time points 

could address the possibility that expression of CDK5 and p35 is increased within 30 minutes, 

but rapidly degraded by the 45 minute time point.     
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The other interesting finding is that THC-experience appeared to prime the FosB 

promoter because THC challenge produced induction of ΔFosB that was not present in drug 

naïve mice.  This finding supports the importance of determining epigenetic factors that may 

occur with long-term drug use and suggests the necessity of targeting these factors for drug 

abuse treatment (Renthal and Nestler, 2008).  These therapies would have to target and reverse 

epigenetic changes to provide effective treatment.  Currently, there are no clinically approved 

therapies available for altering epigenetic effects (Renthal and Nestler, 2008).  The studies in 

Chapter 4 also provided evidence for the selective regulation of p35 in D1R/dynorphin MSNs 

because the regulation of this protein by THC was similar in the caudate-putamen and substantia 

nigra, whereas there was no effect in globus pallidus, which receives inputs from the 

D2R/enkephalin MSN population.  Future studies are necessary to determine whether regulation 

of p35 is restricted to the D1R/dynorphin MSN population, as it would suggest further 

differences in the regulation of these two MSN populations following THC administration.  

Studies similar to Chapter 3 could be performed to determine if antagonism of either D1Rs or 

D2Rs blocks this effect.  Finally, although CDK5, p35 and p25 were increased in the prefrontal 

cortex, only one target of CDK5, tau, exhibited increased phosphorylation as predicted.  

Functional assays that measure the kinase activity of CDK5 are necessary to determine whether 

CDK5 activity also increased in the prefrontal cortex and to determine if the lack of 

phosphorylation of targets of CDK5 was due to other factors.  Understanding these signaling 

changes may also help elucidate possible mechanisms for marijuana-mediated exacerbation of 

the progression of schizophrenia, a disorder that is hypothesized to be heavily influenced by 

maladaptive cortical oscillations (Curley and Lewis, 2012), which may relate to the regulation of 

neurotransmission by CB1Rs.  New therapies are necessary for the treatment of schizophrenia 
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because only approximately 50% of patients that receive current medications achieve sustained 

remission of positive and negative symptoms (Galderisi et al., 2013).  Understanding how THC 

may exacerbate these symptoms could provide insight into designing therapeutic strategies that 

might alleviate these symptoms.         

One consistent finding of the studies in this dissertation is that repeated THC 

administration produces specific brain region-dependent induction of ΔFosB.  Although the role 

that ΔFosB plays in drug abuse is not completely understood, this thesis suggests that both 

CB1Rs and D1Rs are involved in its induction by THC.  The brain region-dependent induction of 

ΔFosB, however, does not necessarily translate into similar ΔFosB-mediated regulation of 

transcription, because the expression of well-defined targets of ΔFosB differed among brain 

regions. However, it is important to remember that these results were determined using a limited 

scope of THC treatment paradigms and time courses.  Again, these studies did not address 

whether ΔFosB is expressed exclusively in neurons and whether the findings discussed above 

could be due to induction of ΔFosB in astroctyes (Stella, 2010). It is possible that ΔFosB 

differentially regulates protein expression in neurons and astrocytes.  Future studies will need to 

identify the protein targets that are regulated by ΔFosB, and in which cell types, to determine if 

they regulate CB1R desensitization and whether they contribute to the rewarding effects of drugs 

of abuse.  Further immunohistochemical characterization could be used to address this question.  

Although it is not clear whether ΔFosB is a necessary regulator of CB1R desensitization, these 

studies suggest that it could contribute to CB1R desensitization in certain brain circuits.  Future 

studies could further investigate the brain regions in which ΔFosB regulate CB1R desensitization 

using virally-mediated overexpression of ΔFosB, or through use of small molecules that inhibit 

ΔFosB.  The ability to design cannabinoid-based therapeutics by maximizing their clinical utility 
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while minimizing their side effects requires understanding these brain region-dependent 

differences in signaling.  This is an important consideration for patients with long-term disorders 

such as epilepsy and multiple sclerosis, for which THC has shown promise in treating, who will 

need to function in their daily lives.  If decrements in motor coordination impact their ability to 

drive, for instance, then THC treatment would not be entirely beneficial. Further, inhibition of 

ΔFosB might be useful for treating marijuana dependence based on preclinical evidence that 

∆FosB contributes to the rewarding effects of drugs of abuse.      

These results have implications for developing drugs that could mitigate some of the negative 

side effects of THC and enhance its therapeutic utility.  Recently, Nestler and collaborators have 

developed small molecules that could inhibit the function of ΔFosB by screening small 

molecules for their ability to prevent ΔFosB from binding to a modified CDK5 promoter (Wang 

et al., 2012).    Nucleic acid aptamers provide another strategy for producing selective targets 

that could inhibit ΔFosB transcription (Li et al., 2013).  The strategy of blocking ΔFosB 

transcription could be used to enhance CB1R desensitization in the caudate-putamen and enhance 

the development of tolerance to THC-mediated motor impairment.  This is based on results in 

caudate-putamen that showed overexpression of ΔcJun, which also inhibits ΔFosB 

transcriptional regulation, enhanced CB1R desensitization and tolerance to locomotor 

suppression.  Tolerance to motor impairment does not develop as readily as tolerance to other 

THC-mediated effects in human marijuana users (D'Souza et al., 2008), and motor impairment is 

a potential concern for the performance of day to day activities in patients.  This would suggest 

that introducing a small molecular inhibitor in combination with THC could enhance tolerance to 

its motor impairing effects, and improve diving safety in patients treated with cannabinoids for 

long periods of time.  Targeting transcriptional regulation of other Fos family members could 
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also mitigate the memory impairing effects of cannabinoids (Nestor et al., 2008).  Similar small 

molecules and aptamers could be produced to block the Fos family members that may contribute 

to THC-mediated CB1R desensitization in hippocampus, which could mitigate memory-

impairing effects.  Targeting ΔFosB may also help those who are dependent on marijuana.  The 

findings of this dissertation have further characterized the brain region-dependent differences in 

the receptors /signaling proteins that modulate THC-mediated induction of ΔFosB.  It has also 

elucidated a role for ΔFosB and other Fos family members in modulating CB1R signaling and 

provided evidence for brain region-dependent differences in the transcriptional regulation of 

ΔFosB following repeated THC administration. These results provide insights into the 

therapeutic potential of targeting ΔFosB for mitigating the long-term side effects of THC.  
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